Getting Started
Let’s say we want to make a function that parses dates of the form
YYYY-MM-DD
. We’re not going to worry about validating the date, any
triple of integers is fine. So let’s bang something out real quick.
#![allow(unused)] fn main() { fn parse_date(s: &str) -> Option<(u32, u32, u32)> { if 10 != s.len() { return None; } if "-" != &s[4..5] || "-" != &s[7..8] { return None; } let year = &s[0..4]; let month = &s[6..7]; let day = &s[8..10]; year.parse::<u32>().ok().and_then( |y| month.parse::<u32>().ok().and_then( |m| day.parse::<u32>().ok().map( |d| (y, m, d)))) } }
It compiles, that means it works, right? Maybe not, let’s add some tests.
#[test]
fn test_parse_date() {
assert_eq!(None, parse_date("2017-06-1"));
assert_eq!(None, parse_date("2017-06-170"));
assert_eq!(None, parse_date("2017006-17"));
assert_eq!(None, parse_date("2017-06017"));
assert_eq!(Some((2017, 06, 17)), parse_date("2017-06-17"));
}
Tests pass, deploy to production! But now your application starts crashing, and people are upset that you moved Christmas to February. Maybe we need to be a bit more thorough.
In Cargo.toml
, add
[dev-dependencies]
proptest = "1.0.0"
Now we can add some property tests to our date parser. But how do we test the date parser for arbitrary inputs, without making another date parser in the test to validate it? We won’t need to as long as we choose our inputs and properties correctly. But before correctness, there’s actually an even simpler property to test: The function should not crash. Let’s start there.
// Bring the macros and other important things into scope.
use proptest::prelude::*;
proptest! {
#[test]
fn doesnt_crash(s in "\\PC*") {
parse_date(&s);
}
}
What this does is take a literally random &String
(ignore \\PC*
for the
moment, we’ll get back to that — if you’ve already figured it out, contain
your excitement for a bit) and give it to parse_date()
and then throw the
output away.
When we run this, we get a bunch of scary-looking output, eventually ending with
thread 'main' panicked at 'Test failed: byte index 4 is not a char boundary; it is inside 'ௗ' (bytes 2..5) of `aAௗ0㌀0`; minimal failing input: s = "aAௗ0㌀0"
successes: 102
local rejects: 0
global rejects: 0
'
If we look at the top directory after the test fails, we’ll see a new
proptest-regressions
directory, which contains some files corresponding to
source files containing failing test cases. These are failure
persistence
files. The first thing we should do is add these to source control.
$ git add proptest-regressions
The next thing we should do is copy the failing case to a traditional unit test since it has exposed a bug not similar to what we’ve tested in the past.
#[test]
fn test_unicode_gibberish() {
assert_eq!(None, parse_date("aAௗ0㌀0"));
}
Now, let’s see what happened... we forgot about UTF-8! You can’t just blindly slice strings since you could split a character, in this case that Tamil diacritic placed atop other characters in the string.
In the interest of making the code changes as small as possible, we’ll just check that the string is ASCII and reject anything that isn’t.
#![allow(unused)] fn main() { use std::ascii::AsciiExt; //NOREADME // NOREADME fn parse_date(s: &str) -> Option<(u32, u32, u32)> { if 10 != s.len() { return None; } // NEW: Ignore non-ASCII strings so we don't need to deal with Unicode. if !s.is_ascii() { return None; } if "-" != &s[4..5] || "-" != &s[7..8] { return None; } let year = &s[0..4]; let month = &s[6..7]; let day = &s[8..10]; year.parse::<u32>().ok().and_then( |y| month.parse::<u32>().ok().and_then( |m| day.parse::<u32>().ok().map( |d| (y, m, d)))) } }
The tests pass now! But we know there are still more problems, so let’s test more properties.
Another property we want from our code is that it parses every valid date.
We can add another test to the proptest!
section:
proptest! {
// snip...
#[test]
fn parses_all_valid_dates(s in "[0-9]{4}-[0-9]{2}-[0-9]{2}") {
parse_date(&s).unwrap();
}
}
The thing to the right-hand side of in
is actually a regular
expression, and s
is chosen from strings which match it. So in our
previous test, "\\PC*"
was generating arbitrary strings composed of
arbitrary non-control characters. Now, we generate things in the YYYY-MM-DD
format.
The new test passes, so let’s move on to something else.
The final property we want to check is that the dates are actually parsed correctly. Now, we can’t do this by generating strings — we’d end up just reimplementing the date parser in the test! Instead, we start from the expected output, generate the string, and check that it gets parsed back.
proptest! {
// snip...
#[test]
fn parses_date_back_to_original(y in 0u32..10000,
m in 1u32..13, d in 1u32..32) {
let (y2, m2, d2) = parse_date(
&format!("{:04}-{:02}-{:02}", y, m, d)).unwrap();
// prop_assert_eq! is basically the same as assert_eq!, but doesn't
// cause a bunch of panic messages to be printed on intermediate
// test failures. Which one to use is largely a matter of taste.
prop_assert_eq!((y, m, d), (y2, m2, d2));
}
}
Here, we see that besides regexes, we can use any expression which is a
proptest::strategy::Strategy
, in this case, integer ranges.
The test fails when we run it. Though there’s not much output this time.
thread 'main' panicked at 'Test failed: assertion failed: `(left == right)` (left: `(0, 10, 1)`, right: `(0, 0, 1)`) at examples/dateparser_v2.rs:46; minimal failing input: y = 0, m = 10, d = 1
successes: 2
local rejects: 0
global rejects: 0
', examples/dateparser_v2.rs:33
note: Run with `RUST_BACKTRACE=1` for a backtrace.
The failing input is (y, m, d) = (0, 10, 1)
, which is a rather specific
output. Before thinking about why this breaks the code, let’s look at what
proptest did to arrive at this value. At the start of our test function,
insert
println!("y = {}, m = {}, d = {}", y, m, d);
Running the test again, we get something like this:
y = 2497, m = 8, d = 27
y = 9641, m = 8, d = 18
y = 7360, m = 12, d = 20
y = 3680, m = 12, d = 20
y = 1840, m = 12, d = 20
y = 920, m = 12, d = 20
y = 460, m = 12, d = 20
y = 230, m = 12, d = 20
y = 115, m = 12, d = 20
y = 57, m = 12, d = 20
y = 28, m = 12, d = 20
y = 14, m = 12, d = 20
y = 7, m = 12, d = 20
y = 3, m = 12, d = 20
y = 1, m = 12, d = 20
y = 0, m = 12, d = 20
y = 0, m = 6, d = 20
y = 0, m = 9, d = 20
y = 0, m = 11, d = 20
y = 0, m = 10, d = 20
y = 0, m = 10, d = 10
y = 0, m = 10, d = 5
y = 0, m = 10, d = 3
y = 0, m = 10, d = 2
y = 0, m = 10, d = 1
The test failure message said there were two successful cases; we see these
at the very top, 2497-08-27
and 9641-08-18
. The next case,
7360-12-20
, failed. There’s nothing immediately obviously special about
this date. Fortunately, proptest reduced it to a much simpler case. First,
it rapidly reduced the y
input to 0
at the beginning, and similarly
reduced the d
input to the minimum allowable value of 1
at the end.
Between those two, though, we see something different: it tried to shrink
12
to 6
, but then ended up raising it back up to 10
. This is because
the 0000-06-20
and 0000-09-20
test cases passed.
In the end, we get the date 0000-10-01
, which apparently gets parsed as
0000-00-01
. Again, this failing case was added to the failure persistence
file, and we should add this as its own unit test:
$ git add proptest-regressions
#[test]
fn test_october_first() {
assert_eq!(Some((0, 10, 1)), parse_date("0000-10-01"));
}
Now to figure out what’s broken in the code. Even without the intermediate
input, we can say with reasonable confidence that the year and day parts
don’t come into the picture since both were reduced to the minimum
allowable input. The month input was not, but was reduced to 10
. This
means we can infer that there’s something special about 10
that doesn’t
hold for 9
. In this case, that “special something” is being two digits
wide. In our code:
let month = &s[6..7];
We were off by one, and need to use the range 5..7
. After fixing this,
the test passes.
The proptest!
macro has some additional syntax, including for setting
configuration for things like the number of test cases to generate. See its
documentation
for more details.