[][src]Trait proptest::strategy::Strategy

#[must_use = "strategies do nothing unless used"]
pub trait Strategy: Debug {
    type Tree: ValueTree<Value = Self::Value>;
    type Value: Debug;
    fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self>;

    fn prop_map<O: Debug, F: Fn(Self::Value) -> O>(self, fun: F) -> Map<Self, F>
    where
        Self: Sized
, { ... }
fn prop_map_into<O: Debug>(self) -> MapInto<Self, O>
    where
        Self: Sized,
        Self::Value: Into<O>
, { ... }
fn prop_perturb<O: Debug, F: Fn(Self::Value, TestRng) -> O>(
        self,
        fun: F
    ) -> Perturb<Self, F>
    where
        Self: Sized
, { ... }
fn prop_flat_map<S: Strategy, F: Fn(Self::Value) -> S>(
        self,
        fun: F
    ) -> Flatten<Map<Self, F>>
    where
        Self: Sized
, { ... }
fn prop_ind_flat_map<S: Strategy, F: Fn(Self::Value) -> S>(
        self,
        fun: F
    ) -> IndFlatten<Map<Self, F>>
    where
        Self: Sized
, { ... }
fn prop_ind_flat_map2<S: Strategy, F: Fn(Self::Value) -> S>(
        self,
        fun: F
    ) -> IndFlattenMap<Self, F>
    where
        Self: Sized
, { ... }
fn prop_filter<R: Into<Reason>, F: Fn(&Self::Value) -> bool>(
        self,
        whence: R,
        fun: F
    ) -> Filter<Self, F>
    where
        Self: Sized
, { ... }
fn prop_filter_map<F: Fn(Self::Value) -> Option<O>, O: Debug>(
        self,
        whence: impl Into<Reason>,
        fun: F
    ) -> FilterMap<Self, F>
    where
        Self: Sized
, { ... }
fn prop_union(self, other: Self) -> Union<Self>
    where
        Self: Sized
, { ... }
fn prop_recursive<R: Strategy<Value = Self::Value> + 'static, F: Fn(BoxedStrategy<Self::Value>) -> R>(
        self,
        depth: u32,
        desired_size: u32,
        expected_branch_size: u32,
        recurse: F
    ) -> Recursive<Self::Value, F>
    where
        Self: Sized + 'static
, { ... }
fn prop_shuffle(self) -> Shuffle<Self>
    where
        Self: Sized,
        Self::Value: Shuffleable
, { ... }
fn boxed(self) -> BoxedStrategy<Self::Value>
    where
        Self: Sized + 'static
, { ... }
fn sboxed(self) -> SBoxedStrategy<Self::Value>
    where
        Self: Sized + Send + Sync + 'static
, { ... }
fn no_shrink(self) -> NoShrink<Self>
    where
        Self: Sized
, { ... } }

A strategy for producing arbitrary values of a given type.

fmt::Debug is a hard requirement for all strategies currently due to prop_flat_map(). This constraint will be removed when specialisation becomes stable.

Associated Types

type Tree: ValueTree<Value = Self::Value>

The value tree generated by this Strategy.

type Value: Debug

The type of value used by functions under test generated by this Strategy.

This corresponds to the same type as the associated type Value in Self::Tree. It is provided here to simplify usage particularly in conjunction with -> impl Strategy<Value = MyType>.

Loading content...

Required methods

fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self>

Generate a new value tree from the given runner.

This may fail if there are constraints on the generated value and the generator is unable to produce anything that satisfies them. Any failure is wrapped in TestError::Abort.

This method is generally expected to be deterministic. That is, given a TestRunner with its RNG in a particular state, this should produce an identical ValueTree every time. Non-deterministic strategies do not cause problems during normal operation, but they do break failure persistence since it is implemented by simply saving the seed used to generate the test case.

Loading content...

Provided methods

fn prop_map<O: Debug, F: Fn(Self::Value) -> O>(self, fun: F) -> Map<Self, F> where
    Self: Sized

Returns a strategy which produces values transformed by the function fun.

There is no need (or possibility, for that matter) to define how the output is to be shrunken. Shrinking continues to take place in terms of the source value.

fun should be a deterministic function. That is, for a given input value, it should produce an equivalent output value on every call. Proptest assumes that it can call the function as many times as needed to generate as many identical values as needed. For this reason, F is Fn rather than FnMut.

fn prop_map_into<O: Debug>(self) -> MapInto<Self, O> where
    Self: Sized,
    Self::Value: Into<O>, 

Returns a strategy which produces values of type O by transforming Self with Into<O>.

You should always prefer this operation instead of prop_map when you can as it is both clearer and also currently more efficient.

There is no need (or possibility, for that matter) to define how the output is to be shrunken. Shrinking continues to take place in terms of the source value.

fn prop_perturb<O: Debug, F: Fn(Self::Value, TestRng) -> O>(
    self,
    fun: F
) -> Perturb<Self, F> where
    Self: Sized

Returns a strategy which produces values transformed by the function fun, which is additionally given a random number generator.

This is exactly like prop_map() except for the addition of the second argument to the function. This allows introducing chaotic variations to generated values that are not easily expressed otherwise while allowing shrinking to proceed reasonably.

During shrinking, fun is always called with an identical random number generator, so if it is a pure function it will always perform the same perturbation.

Example

// The prelude also gets us the `Rng` trait.
use proptest::prelude::*;

proptest! {
  #[test]
  fn test_something(a in (0i32..10).prop_perturb(
      // Perturb the integer `a` (range 0..10) to a pair of that
      // integer and another that's ± 10 of it.
      // Note that this particular case would be better implemented as
      // `(0i32..10, -10i32..10).prop_map(|(a, b)| (a, a + b))`
      // but is shown here for simplicity.
      |centre, rng| (centre, centre + rng.gen_range(-10, 10))))
  {
      // Test stuff
  }
}

fn prop_flat_map<S: Strategy, F: Fn(Self::Value) -> S>(
    self,
    fun: F
) -> Flatten<Map<Self, F>> where
    Self: Sized

Maps values produced by this strategy into new strategies and picks values from those strategies.

fun is used to transform the values produced by this strategy into other strategies. Values are then chosen from the derived strategies. Shrinking proceeds by shrinking individual values as well as shrinking the input used to generate the internal strategies.

Shrinking

In the case of test failure, shrinking will not only shrink the output from the combinator itself, but also the input, i.e., the strategy used to generate the output itself. Doing this requires searching the new derived strategy for a new failing input. The combinator will generate up to Config::cases values for this search.

As a result, nested prop_flat_map/Flatten combinators risk exponential run time on this search for new failing values. To ensure that test failures occur within a reasonable amount of time, all of these combinators share a single "flat map regen" counter, and will stop generating new values if it exceeds Config::max_flat_map_regens.

Example

Generate two integers, where the second is always less than the first, without using filtering:

use proptest::prelude::*;

proptest! {
  #[test]
  fn test_two(
    // Pick integers in the 1..65536 range, and derive a strategy
    // which emits a tuple of that integer and another one which is
    // some value less than it.
    (a, b) in (1..65536).prop_flat_map(|a| (Just(a), 0..a))
  ) {
    prop_assert!(b < a);
  }
}

Choosing the right flat-map

Strategy has three "flat-map" combinators. They look very similar at first, and can be used to produce superficially identical test results. For example, the following three expressions all produce inputs which are 2-tuples (a,b) where the b component is less than a.

use proptest::prelude::*;

let flat_map = (1..10).prop_flat_map(|a| (Just(a), 0..a));
let ind_flat_map = (1..10).prop_ind_flat_map(|a| (Just(a), 0..a));
let ind_flat_map2 = (1..10).prop_ind_flat_map2(|a| 0..a);

The three do differ however in terms of how they shrink.

For flat_map, both a and b will shrink, and the invariant that b < a is maintained. This is a "dependent" or "higher-order" strategy in that it remembers that the strategy for choosing b is dependent on the value chosen for a.

For ind_flat_map, the invariant b < a is maintained, but only because a does not shrink. This is due to the fact that the dependency between the strategies is not tracked; a is simply seen as a constant.

Finally, for ind_flat_map2, the invariant b < a is not maintained, because a can shrink independently of b, again because the dependency between the two variables is not tracked, but in this case the derivation of a is still exposed to the shrinking system.

The use-cases for the independent flat-map variants is pretty narrow. For the majority of cases where invariants need to be maintained and you want all components to shrink, prop_flat_map is the way to go. prop_ind_flat_map makes the most sense when the input to the map function is not exposed in the output and shrinking across strategies is not expected to be useful. prop_ind_flat_map2 is useful for using related values as starting points while not constraining them to that relation.

fn prop_ind_flat_map<S: Strategy, F: Fn(Self::Value) -> S>(
    self,
    fun: F
) -> IndFlatten<Map<Self, F>> where
    Self: Sized

Maps values produced by this strategy into new strategies and picks values from those strategies while considering the new strategies to be independent.

This is very similar to prop_flat_map(), but shrinking will not attempt to shrink the input that produces the derived strategies. This is appropriate for when the derived strategies already fully shrink in the desired way.

In most cases, you want prop_flat_map().

See prop_flat_map() for a more detailed explanation on how the three flat-map combinators differ.

fn prop_ind_flat_map2<S: Strategy, F: Fn(Self::Value) -> S>(
    self,
    fun: F
) -> IndFlattenMap<Self, F> where
    Self: Sized

Similar to prop_ind_flat_map(), but produces 2-tuples with the input generated from self in slot 0 and the derived strategy in slot 1.

See prop_flat_map() for a more detailed explanation on how the three flat-map combinators differ differ.

fn prop_filter<R: Into<Reason>, F: Fn(&Self::Value) -> bool>(
    self,
    whence: R,
    fun: F
) -> Filter<Self, F> where
    Self: Sized

Returns a strategy which only produces values accepted by fun.

This results in a very naïve form of rejection sampling and should only be used if (a) relatively few values will actually be rejected; (b) it isn't easy to express what you want by using another strategy and/or map().

There are a lot of downsides to this form of filtering. It slows testing down, since values must be generated but then discarded. Proptest only allows a limited number of rejects this way (across the entire TestRunner). Rejection can interfere with shrinking; particularly, complex filters may largely or entirely prevent shrinking from substantially altering the original value.

Local rejection sampling is still preferable to rejecting the entire input to a test (via TestCaseError::Reject), however, and the default number of local rejections allowed is much higher than the number of whole-input rejections.

whence is used to record where and why the rejection occurred.

fn prop_filter_map<F: Fn(Self::Value) -> Option<O>, O: Debug>(
    self,
    whence: impl Into<Reason>,
    fun: F
) -> FilterMap<Self, F> where
    Self: Sized

Returns a strategy which only produces transformed values where fun returns Some(value) and rejects those where fun returns None.

Using this method is preferable to using .prop_map(..).prop_filter(..).

This results in a very naïve form of rejection sampling and should only be used if (a) relatively few values will actually be rejected; (b) it isn't easy to express what you want by using another strategy and/or map().

There are a lot of downsides to this form of filtering. It slows testing down, since values must be generated but then discarded. Proptest only allows a limited number of rejects this way (across the entire TestRunner). Rejection can interfere with shrinking; particularly, complex filters may largely or entirely prevent shrinking from substantially altering the original value.

Local rejection sampling is still preferable to rejecting the entire input to a test (via TestCaseError::Reject), however, and the default number of local rejections allowed is much higher than the number of whole-input rejections.

whence is used to record where and why the rejection occurred.

fn prop_union(self, other: Self) -> Union<Self> where
    Self: Sized

Returns a strategy which picks uniformly from self and other.

When shrinking, if a value from other was originally chosen but that value can be shrunken no further, it switches to a value from self and starts shrinking that.

Be aware that chaining prop_union calls will result in a very right-skewed distribution. If this is not what you want, you can call the .or() method on the Union to add more values to the same union, or directly call Union::new().

Both self and other must be of the same type. To combine heterogeneous strategies, call the boxed() method on both self and other to erase the type differences before calling prop_union().

fn prop_recursive<R: Strategy<Value = Self::Value> + 'static, F: Fn(BoxedStrategy<Self::Value>) -> R>(
    self,
    depth: u32,
    desired_size: u32,
    expected_branch_size: u32,
    recurse: F
) -> Recursive<Self::Value, F> where
    Self: Sized + 'static, 

Generate a recursive structure with self items as leaves.

recurse is applied to various strategies that produce the same type as self with nesting depth n to create a strategy that produces the same type with nesting depth n+1. Generated structures will have a depth between 0 and depth and will usually have up to desired_size total elements, though they may have more. expected_branch_size gives the expected maximum size for any collection which may contain recursive elements and is used to control branch probability to achieve the desired size. Passing a too small value can result in trees vastly larger than desired.

Note that depth only counts branches; i.e., depth = 0 is a single leaf, and depth = 1 is a leaf or a branch containing only leaves.

In practise, generated values usually have a lower depth than depth (but depth is a hard limit) and almost always under expected_branch_size (though it is not a hard limit) since the underlying code underestimates probabilities.

Shrinking shrinks both the inner values and attempts switching from recursive to non-recursive cases.

Example

use std::collections::HashMap;

use proptest::prelude::*;

/// Define our own JSON AST type
#[derive(Debug, Clone)]
enum JsonNode {
  Null,
  Bool(bool),
  Number(f64),
  String(String),
  Array(Vec<JsonNode>),
  Map(HashMap<String, JsonNode>),
}

// Define a strategy for generating leaf nodes of the AST
let json_leaf = prop_oneof![
  Just(JsonNode::Null),
  prop::bool::ANY.prop_map(JsonNode::Bool),
  prop::num::f64::ANY.prop_map(JsonNode::Number),
  ".*".prop_map(JsonNode::String),
];

// Now define a strategy for a whole tree
let json_tree = json_leaf.prop_recursive(
  4, // No more than 4 branch levels deep
  64, // Target around 64 total elements
  16, // Each collection is up to 16 elements long
  |element| prop_oneof![
    // NB `element` is an `Arc` and we'll need to reference it twice,
    // so we clone it the first time.
    prop::collection::vec(element.clone(), 0..16)
      .prop_map(JsonNode::Array),
    prop::collection::hash_map(".*", element, 0..16)
      .prop_map(JsonNode::Map)
  ]);

fn prop_shuffle(self) -> Shuffle<Self> where
    Self: Sized,
    Self::Value: Shuffleable

Shuffle the contents of the values produced by this strategy.

That is, this modifies a strategy producing a Vec, slice, etc, to shuffle the contents of that Vec/slice/etc.

Initially, the value is fully shuffled. During shrinking, the input value will initially be unchanged while the result will gradually be restored to its original order. Once de-shuffling either completes or is cancelled by calls to complicate() pinning it to a particular permutation, the inner value will be simplified.

Example

use proptest::prelude::*;

static VALUES: &'static [u32] = &[0, 1, 2, 3, 4];

fn is_permutation(orig: &[u32], mut actual: Vec<u32>) -> bool {
  actual.sort();
  orig == &actual[..]
}

proptest! {
  #[test]
  fn test_is_permutation(
      ref perm in Just(VALUES.to_owned()).prop_shuffle()
  ) {
      assert!(is_permutation(VALUES, perm.clone()));
  }
}

fn boxed(self) -> BoxedStrategy<Self::Value> where
    Self: Sized + 'static, 

Erases the type of this Strategy so it can be passed around as a simple trait object.

See also sboxed() if this Strategy is Send and Sync and you want to preserve that information.

Strategies of this type afford cheap shallow cloning via reference counting by using an Arc internally.

fn sboxed(self) -> SBoxedStrategy<Self::Value> where
    Self: Sized + Send + Sync + 'static, 

Erases the type of this Strategy so it can be passed around as a simple trait object.

Unlike boxed(), this conversion retains the Send and Sync traits on the output.

Strategies of this type afford cheap shallow cloning via reference counting by using an Arc internally.

fn no_shrink(self) -> NoShrink<Self> where
    Self: Sized

Wraps this strategy to prevent values from being subject to shrinking.

Suppressing shrinking is useful when testing things like linear approximation functions. Ordinarily, proptest will tend to shrink the input to the function until the result is just barely outside the acceptable range whereas the original input may have produced a result far outside of it. Since this makes it harder to see what the actual problem is, making the input NoShrink allows learning about inputs that produce more incorrect results.

Loading content...

Implementations on Foreign Types

impl<S: Strategy> Strategy for [S; 1][src]

type Tree = ArrayValueTree<[S::Tree; 1]>

type Value = [S::Value; 1]

impl<S: Strategy> Strategy for [S; 2][src]

type Tree = ArrayValueTree<[S::Tree; 2]>

type Value = [S::Value; 2]

impl<S: Strategy> Strategy for [S; 3][src]

type Tree = ArrayValueTree<[S::Tree; 3]>

type Value = [S::Value; 3]

impl<S: Strategy> Strategy for [S; 4][src]

type Tree = ArrayValueTree<[S::Tree; 4]>

type Value = [S::Value; 4]

impl<S: Strategy> Strategy for [S; 5][src]

type Tree = ArrayValueTree<[S::Tree; 5]>

type Value = [S::Value; 5]

impl<S: Strategy> Strategy for [S; 6][src]

type Tree = ArrayValueTree<[S::Tree; 6]>

type Value = [S::Value; 6]

impl<S: Strategy> Strategy for [S; 7][src]

type Tree = ArrayValueTree<[S::Tree; 7]>

type Value = [S::Value; 7]

impl<S: Strategy> Strategy for [S; 8][src]

type Tree = ArrayValueTree<[S::Tree; 8]>

type Value = [S::Value; 8]

impl<S: Strategy> Strategy for [S; 9][src]

type Tree = ArrayValueTree<[S::Tree; 9]>

type Value = [S::Value; 9]

impl<S: Strategy> Strategy for [S; 10][src]

type Tree = ArrayValueTree<[S::Tree; 10]>

type Value = [S::Value; 10]

impl<S: Strategy> Strategy for [S; 11][src]

type Tree = ArrayValueTree<[S::Tree; 11]>

type Value = [S::Value; 11]

impl<S: Strategy> Strategy for [S; 12][src]

type Tree = ArrayValueTree<[S::Tree; 12]>

type Value = [S::Value; 12]

impl<S: Strategy> Strategy for [S; 13][src]

type Tree = ArrayValueTree<[S::Tree; 13]>

type Value = [S::Value; 13]

impl<S: Strategy> Strategy for [S; 14][src]

type Tree = ArrayValueTree<[S::Tree; 14]>

type Value = [S::Value; 14]

impl<S: Strategy> Strategy for [S; 15][src]

type Tree = ArrayValueTree<[S::Tree; 15]>

type Value = [S::Value; 15]

impl<S: Strategy> Strategy for [S; 16][src]

type Tree = ArrayValueTree<[S::Tree; 16]>

type Value = [S::Value; 16]

impl<S: Strategy> Strategy for [S; 17][src]

type Tree = ArrayValueTree<[S::Tree; 17]>

type Value = [S::Value; 17]

impl<S: Strategy> Strategy for [S; 18][src]

type Tree = ArrayValueTree<[S::Tree; 18]>

type Value = [S::Value; 18]

impl<S: Strategy> Strategy for [S; 19][src]

type Tree = ArrayValueTree<[S::Tree; 19]>

type Value = [S::Value; 19]

impl<S: Strategy> Strategy for [S; 20][src]

type Tree = ArrayValueTree<[S::Tree; 20]>

type Value = [S::Value; 20]

impl<S: Strategy> Strategy for [S; 21][src]

type Tree = ArrayValueTree<[S::Tree; 21]>

type Value = [S::Value; 21]

impl<S: Strategy> Strategy for [S; 22][src]

type Tree = ArrayValueTree<[S::Tree; 22]>

type Value = [S::Value; 22]

impl<S: Strategy> Strategy for [S; 23][src]

type Tree = ArrayValueTree<[S::Tree; 23]>

type Value = [S::Value; 23]

impl<S: Strategy> Strategy for [S; 24][src]

type Tree = ArrayValueTree<[S::Tree; 24]>

type Value = [S::Value; 24]

impl<S: Strategy> Strategy for [S; 25][src]

type Tree = ArrayValueTree<[S::Tree; 25]>

type Value = [S::Value; 25]

impl<S: Strategy> Strategy for [S; 26][src]

type Tree = ArrayValueTree<[S::Tree; 26]>

type Value = [S::Value; 26]

impl<S: Strategy> Strategy for [S; 27][src]

type Tree = ArrayValueTree<[S::Tree; 27]>

type Value = [S::Value; 27]

impl<S: Strategy> Strategy for [S; 28][src]

type Tree = ArrayValueTree<[S::Tree; 28]>

type Value = [S::Value; 28]

impl<S: Strategy> Strategy for [S; 29][src]

type Tree = ArrayValueTree<[S::Tree; 29]>

type Value = [S::Value; 29]

impl<S: Strategy> Strategy for [S; 30][src]

type Tree = ArrayValueTree<[S::Tree; 30]>

type Value = [S::Value; 30]

impl<S: Strategy> Strategy for [S; 31][src]

type Tree = ArrayValueTree<[S::Tree; 31]>

type Value = [S::Value; 31]

impl<S: Strategy> Strategy for [S; 32][src]

type Tree = ArrayValueTree<[S::Tree; 32]>

type Value = [S::Value; 32]

impl<T: Strategy> Strategy for Vec<T>[src]

type Tree = VecValueTree<T::Tree>

type Value = Vec<T::Value>

impl Strategy for Range<i8>[src]

type Tree = BinarySearch

type Value = i8

impl Strategy for RangeInclusive<i8>[src]

type Tree = BinarySearch

type Value = i8

impl Strategy for RangeFrom<i8>[src]

type Tree = BinarySearch

type Value = i8

impl Strategy for RangeTo<i8>[src]

type Tree = BinarySearch

type Value = i8

impl Strategy for RangeToInclusive<i8>[src]

type Tree = BinarySearch

type Value = i8

impl Strategy for Range<i16>[src]

type Tree = BinarySearch

type Value = i16

impl Strategy for RangeInclusive<i16>[src]

type Tree = BinarySearch

type Value = i16

impl Strategy for RangeFrom<i16>[src]

type Tree = BinarySearch

type Value = i16

impl Strategy for RangeTo<i16>[src]

type Tree = BinarySearch

type Value = i16

impl Strategy for RangeToInclusive<i16>[src]

type Tree = BinarySearch

type Value = i16

impl Strategy for Range<i32>[src]

type Tree = BinarySearch

type Value = i32

impl Strategy for RangeInclusive<i32>[src]

type Tree = BinarySearch

type Value = i32

impl Strategy for RangeFrom<i32>[src]

type Tree = BinarySearch

type Value = i32

impl Strategy for RangeTo<i32>[src]

type Tree = BinarySearch

type Value = i32

impl Strategy for RangeToInclusive<i32>[src]

type Tree = BinarySearch

type Value = i32

impl Strategy for Range<i64>[src]

type Tree = BinarySearch

type Value = i64

impl Strategy for RangeInclusive<i64>[src]

type Tree = BinarySearch

type Value = i64

impl Strategy for RangeFrom<i64>[src]

type Tree = BinarySearch

type Value = i64

impl Strategy for RangeTo<i64>[src]

type Tree = BinarySearch

type Value = i64

impl Strategy for RangeToInclusive<i64>[src]

type Tree = BinarySearch

type Value = i64

impl Strategy for Range<i128>[src]

type Tree = BinarySearch

type Value = i128

impl Strategy for RangeInclusive<i128>[src]

type Tree = BinarySearch

type Value = i128

impl Strategy for RangeFrom<i128>[src]

type Tree = BinarySearch

type Value = i128

impl Strategy for RangeTo<i128>[src]

type Tree = BinarySearch

type Value = i128

impl Strategy for RangeToInclusive<i128>[src]

type Tree = BinarySearch

type Value = i128

impl Strategy for Range<isize>[src]

type Tree = BinarySearch

type Value = isize

impl Strategy for RangeInclusive<isize>[src]

type Tree = BinarySearch

type Value = isize

impl Strategy for RangeFrom<isize>[src]

type Tree = BinarySearch

type Value = isize

impl Strategy for RangeTo<isize>[src]

type Tree = BinarySearch

type Value = isize

impl Strategy for RangeToInclusive<isize>[src]

type Tree = BinarySearch

type Value = isize

impl Strategy for Range<u8>[src]

type Tree = BinarySearch

type Value = u8

impl Strategy for RangeInclusive<u8>[src]

type Tree = BinarySearch

type Value = u8

impl Strategy for RangeFrom<u8>[src]

type Tree = BinarySearch

type Value = u8

impl Strategy for RangeTo<u8>[src]

type Tree = BinarySearch

type Value = u8

impl Strategy for RangeToInclusive<u8>[src]

type Tree = BinarySearch

type Value = u8

impl Strategy for Range<u16>[src]

type Tree = BinarySearch

type Value = u16

impl Strategy for RangeInclusive<u16>[src]

type Tree = BinarySearch

type Value = u16

impl Strategy for RangeFrom<u16>[src]

type Tree = BinarySearch

type Value = u16

impl Strategy for RangeTo<u16>[src]

type Tree = BinarySearch

type Value = u16

impl Strategy for RangeToInclusive<u16>[src]

type Tree = BinarySearch

type Value = u16

impl Strategy for Range<u32>[src]

type Tree = BinarySearch

type Value = u32

impl Strategy for RangeInclusive<u32>[src]

type Tree = BinarySearch

type Value = u32

impl Strategy for RangeFrom<u32>[src]

type Tree = BinarySearch

type Value = u32

impl Strategy for RangeTo<u32>[src]

type Tree = BinarySearch

type Value = u32

impl Strategy for RangeToInclusive<u32>[src]

type Tree = BinarySearch

type Value = u32

impl Strategy for Range<u64>[src]

type Tree = BinarySearch

type Value = u64

impl Strategy for RangeInclusive<u64>[src]

type Tree = BinarySearch

type Value = u64

impl Strategy for RangeFrom<u64>[src]

type Tree = BinarySearch

type Value = u64

impl Strategy for RangeTo<u64>[src]

type Tree = BinarySearch

type Value = u64

impl Strategy for RangeToInclusive<u64>[src]

type Tree = BinarySearch

type Value = u64

impl Strategy for Range<u128>[src]

type Tree = BinarySearch

type Value = u128

impl Strategy for RangeInclusive<u128>[src]

type Tree = BinarySearch

type Value = u128

impl Strategy for RangeFrom<u128>[src]

type Tree = BinarySearch

type Value = u128

impl Strategy for RangeTo<u128>[src]

type Tree = BinarySearch

type Value = u128

impl Strategy for RangeToInclusive<u128>[src]

type Tree = BinarySearch

type Value = u128

impl Strategy for Range<usize>[src]

type Tree = BinarySearch

type Value = usize

impl Strategy for RangeInclusive<usize>[src]

type Tree = BinarySearch

type Value = usize

impl Strategy for RangeFrom<usize>[src]

type Tree = BinarySearch

type Value = usize

impl Strategy for RangeTo<usize>[src]

type Tree = BinarySearch

type Value = usize

impl Strategy for RangeToInclusive<usize>[src]

type Tree = BinarySearch

type Value = usize

impl Strategy for Range<f32>[src]

type Tree = BinarySearch

type Value = f32

impl Strategy for RangeInclusive<f32>[src]

type Tree = BinarySearch

type Value = f32

impl Strategy for RangeFrom<f32>[src]

type Tree = BinarySearch

type Value = f32

impl Strategy for RangeTo<f32>[src]

type Tree = BinarySearch

type Value = f32

impl Strategy for RangeToInclusive<f32>[src]

type Tree = BinarySearch

type Value = f32

impl Strategy for Range<f64>[src]

type Tree = BinarySearch

type Value = f64

impl Strategy for RangeInclusive<f64>[src]

type Tree = BinarySearch

type Value = f64

impl Strategy for RangeFrom<f64>[src]

type Tree = BinarySearch

type Value = f64

impl Strategy for RangeTo<f64>[src]

type Tree = BinarySearch

type Value = f64

impl Strategy for RangeToInclusive<f64>[src]

type Tree = BinarySearch

type Value = f64

impl<T: Debug> Strategy for fn() -> T[src]

type Tree = Self

type Value = T

impl<S: Strategy + ?Sized> Strategy for Box<S>[src]

type Tree = S::Tree

type Value = S::Value

impl<'a, S: Strategy + ?Sized> Strategy for &'a S[src]

type Tree = S::Tree

type Value = S::Value

impl<'a, S: Strategy + ?Sized> Strategy for &'a mut S[src]

type Tree = S::Tree

type Value = S::Value

impl<S: Strategy + ?Sized> Strategy for Rc<S>[src]

type Tree = S::Tree

type Value = S::Value

impl<S: Strategy + ?Sized> Strategy for Arc<S>[src]

type Tree = S::Tree

type Value = S::Value

impl<A: Strategy> Strategy for (A,)[src]

type Tree = TupleValueTree<(A::Tree,)>

type Value = (A::Value,)

impl<A: Strategy, B: Strategy> Strategy for (A, B)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree)>

type Value = (A::Value, B::Value)

impl<A: Strategy, B: Strategy, C: Strategy> Strategy for (A, B, C)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree)>

type Value = (A::Value, B::Value, C::Value)

impl<A: Strategy, B: Strategy, C: Strategy, D: Strategy> Strategy for (A, B, C, D)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree, D::Tree)>

type Value = (A::Value, B::Value, C::Value, D::Value)

impl<A: Strategy, B: Strategy, C: Strategy, D: Strategy, E: Strategy> Strategy for (A, B, C, D, E)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree, D::Tree, E::Tree)>

type Value = (A::Value, B::Value, C::Value, D::Value, E::Value)

impl<A: Strategy, B: Strategy, C: Strategy, D: Strategy, E: Strategy, F: Strategy> Strategy for (A, B, C, D, E, F)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree, D::Tree, E::Tree, F::Tree)>

type Value = (A::Value, B::Value, C::Value, D::Value, E::Value, F::Value)

impl<A: Strategy, B: Strategy, C: Strategy, D: Strategy, E: Strategy, F: Strategy, G: Strategy> Strategy for (A, B, C, D, E, F, G)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree, D::Tree, E::Tree, F::Tree, G::Tree)>

type Value = (A::Value, B::Value, C::Value, D::Value, E::Value, F::Value, G::Value)

impl<A: Strategy, B: Strategy, C: Strategy, D: Strategy, E: Strategy, F: Strategy, G: Strategy, H: Strategy> Strategy for (A, B, C, D, E, F, G, H)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree, D::Tree, E::Tree, F::Tree, G::Tree, H::Tree)>

type Value = (A::Value, B::Value, C::Value, D::Value, E::Value, F::Value, G::Value, H::Value)

impl<A: Strategy, B: Strategy, C: Strategy, D: Strategy, E: Strategy, F: Strategy, G: Strategy, H: Strategy, I: Strategy> Strategy for (A, B, C, D, E, F, G, H, I)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree, D::Tree, E::Tree, F::Tree, G::Tree, H::Tree, I::Tree)>

type Value = (A::Value, B::Value, C::Value, D::Value, E::Value, F::Value, G::Value, H::Value, I::Value)

impl<A: Strategy, B: Strategy, C: Strategy, D: Strategy, E: Strategy, F: Strategy, G: Strategy, H: Strategy, I: Strategy, J: Strategy> Strategy for (A, B, C, D, E, F, G, H, I, J)[src]

type Tree = TupleValueTree<(A::Tree, B::Tree, C::Tree, D::Tree, E::Tree, F::Tree, G::Tree, H::Tree, I::Tree, J::Tree)>

type Value = (A::Value, B::Value, C::Value, D::Value, E::Value, F::Value, G::Value, H::Value, I::Value, J::Value)

impl Strategy for str[src]

type Tree = RegexGeneratorValueTree<String>

type Value = String

Loading content...

Implementors

impl Strategy for proptest::bool::Any[src]

type Tree = BoolValueTree

type Value = bool

impl Strategy for Weighted[src]

type Tree = BoolValueTree

type Value = bool

impl Strategy for proptest::num::f32::Any[src]

type Tree = BinarySearch

type Value = f32

impl Strategy for proptest::num::f64::Any[src]

type Tree = BinarySearch

type Value = f64

impl Strategy for proptest::num::i128::Any[src]

type Tree = BinarySearch

type Value = i128

impl Strategy for proptest::num::i16::Any[src]

type Tree = BinarySearch

type Value = i16

impl Strategy for proptest::num::i32::Any[src]

type Tree = BinarySearch

type Value = i32

impl Strategy for proptest::num::i64::Any[src]

type Tree = BinarySearch

type Value = i64

impl Strategy for proptest::num::i8::Any[src]

type Tree = BinarySearch

type Value = i8

impl Strategy for proptest::num::isize::Any[src]

type Tree = BinarySearch

type Value = isize

impl Strategy for proptest::num::u128::Any[src]

type Tree = BinarySearch

type Value = u128

impl Strategy for proptest::num::u16::Any[src]

type Tree = BinarySearch

type Value = u16

impl Strategy for proptest::num::u32::Any[src]

type Tree = BinarySearch

type Value = u32

impl Strategy for proptest::num::u64::Any[src]

type Tree = BinarySearch

type Value = u64

impl Strategy for proptest::num::u8::Any[src]

type Tree = BinarySearch

type Value = u8

impl Strategy for proptest::num::usize::Any[src]

type Tree = BinarySearch

type Value = usize

impl Strategy for IndexStrategy[src]

type Tree = IndexValueTree

type Value = Index

impl Strategy for SelectorStrategy[src]

type Tree = SelectorValueTree

type Value = Selector

impl<'a> Strategy for CharStrategy<'a>[src]

type Tree = CharValueTree

type Value = char

impl<A: Strategy, B: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>)>[src]

type Tree = TupleUnionValueTree<(LazyValueTree<A>, Option<LazyValueTree<B>>)>

type Value = A::Value

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>)>[src]

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>, D: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>, WA<D>)>[src]

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>, D: Strategy<Value = A::Value>, E: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>, WA<D>, WA<E>)>[src]

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>, D: Strategy<Value = A::Value>, E: Strategy<Value = A::Value>, F: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>, WA<D>, WA<E>, WA<F>)>[src]

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>, D: Strategy<Value = A::Value>, E: Strategy<Value = A::Value>, F: Strategy<Value = A::Value>, G: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>, WA<D>, WA<E>, WA<F>, WA<G>)>[src]

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>, D: Strategy<Value = A::Value>, E: Strategy<Value = A::Value>, F: Strategy<Value = A::Value>, G: Strategy<Value = A::Value>, H: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>, WA<D>, WA<E>, WA<F>, WA<G>, WA<H>)>[src]

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>, D: Strategy<Value = A::Value>, E: Strategy<Value = A::Value>, F: Strategy<Value = A::Value>, G: Strategy<Value = A::Value>, H: Strategy<Value = A::Value>, I: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>, WA<D>, WA<E>, WA<F>, WA<G>, WA<H>, WA<I>)>[src]

impl<A: Strategy, B: Strategy<Value = A::Value>, C: Strategy<Value = A::Value>, D: Strategy<Value = A::Value>, E: Strategy<Value = A::Value>, F: Strategy<Value = A::Value>, G: Strategy<Value = A::Value>, H: Strategy<Value = A::Value>, I: Strategy<Value = A::Value>, J: Strategy<Value = A::Value>> Strategy for TupleUnion<(WA<A>, WA<B>, WA<C>, WA<D>, WA<E>, WA<F>, WA<G>, WA<H>, WA<I>, WA<J>)>[src]

impl<K, V> Strategy for BTreeMapStrategy<K, V> where
    K: Strategy,
    V: Strategy,
    K::Value: Ord
[src]

type Tree = BTreeMapValueTree<K::Tree, V::Tree>

type Value = BTreeMap<K::Value, V::Value>

impl<K, V> Strategy for HashMapStrategy<K, V> where
    K: Strategy,
    V: Strategy,
    K::Value: Hash + Eq
[src]

type Tree = HashMapValueTree<K::Tree, V::Tree>

type Value = HashMap<K::Value, V::Value>

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 1]>[src]

type Tree = ArrayValueTree<[S::Tree; 1]>

type Value = [S::Value; 1]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 2]>[src]

type Tree = ArrayValueTree<[S::Tree; 2]>

type Value = [S::Value; 2]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 3]>[src]

type Tree = ArrayValueTree<[S::Tree; 3]>

type Value = [S::Value; 3]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 4]>[src]

type Tree = ArrayValueTree<[S::Tree; 4]>

type Value = [S::Value; 4]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 5]>[src]

type Tree = ArrayValueTree<[S::Tree; 5]>

type Value = [S::Value; 5]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 6]>[src]

type Tree = ArrayValueTree<[S::Tree; 6]>

type Value = [S::Value; 6]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 7]>[src]

type Tree = ArrayValueTree<[S::Tree; 7]>

type Value = [S::Value; 7]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 8]>[src]

type Tree = ArrayValueTree<[S::Tree; 8]>

type Value = [S::Value; 8]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 9]>[src]

type Tree = ArrayValueTree<[S::Tree; 9]>

type Value = [S::Value; 9]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 10]>[src]

type Tree = ArrayValueTree<[S::Tree; 10]>

type Value = [S::Value; 10]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 11]>[src]

type Tree = ArrayValueTree<[S::Tree; 11]>

type Value = [S::Value; 11]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 12]>[src]

type Tree = ArrayValueTree<[S::Tree; 12]>

type Value = [S::Value; 12]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 13]>[src]

type Tree = ArrayValueTree<[S::Tree; 13]>

type Value = [S::Value; 13]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 14]>[src]

type Tree = ArrayValueTree<[S::Tree; 14]>

type Value = [S::Value; 14]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 15]>[src]

type Tree = ArrayValueTree<[S::Tree; 15]>

type Value = [S::Value; 15]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 16]>[src]

type Tree = ArrayValueTree<[S::Tree; 16]>

type Value = [S::Value; 16]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 17]>[src]

type Tree = ArrayValueTree<[S::Tree; 17]>

type Value = [S::Value; 17]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 18]>[src]

type Tree = ArrayValueTree<[S::Tree; 18]>

type Value = [S::Value; 18]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 19]>[src]

type Tree = ArrayValueTree<[S::Tree; 19]>

type Value = [S::Value; 19]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 20]>[src]

type Tree = ArrayValueTree<[S::Tree; 20]>

type Value = [S::Value; 20]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 21]>[src]

type Tree = ArrayValueTree<[S::Tree; 21]>

type Value = [S::Value; 21]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 22]>[src]

type Tree = ArrayValueTree<[S::Tree; 22]>

type Value = [S::Value; 22]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 23]>[src]

type Tree = ArrayValueTree<[S::Tree; 23]>

type Value = [S::Value; 23]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 24]>[src]

type Tree = ArrayValueTree<[S::Tree; 24]>

type Value = [S::Value; 24]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 25]>[src]

type Tree = ArrayValueTree<[S::Tree; 25]>

type Value = [S::Value; 25]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 26]>[src]

type Tree = ArrayValueTree<[S::Tree; 26]>

type Value = [S::Value; 26]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 27]>[src]

type Tree = ArrayValueTree<[S::Tree; 27]>

type Value = [S::Value; 27]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 28]>[src]

type Tree = ArrayValueTree<[S::Tree; 28]>

type Value = [S::Value; 28]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 29]>[src]

type Tree = ArrayValueTree<[S::Tree; 29]>

type Value = [S::Value; 29]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 30]>[src]

type Tree = ArrayValueTree<[S::Tree; 30]>

type Value = [S::Value; 30]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 31]>[src]

type Tree = ArrayValueTree<[S::Tree; 31]>

type Value = [S::Value; 31]

impl<S: Strategy> Strategy for UniformArrayStrategy<S, [S::Value; 32]>[src]

type Tree = ArrayValueTree<[S::Tree; 32]>

type Value = [S::Value; 32]

impl<S: Strategy> Strategy for Flatten<S> where
    S::Value: Strategy
[src]

type Tree = FlattenValueTree<S::Tree>

type Value = <S::Value as Strategy>::Value

impl<S: Strategy> Strategy for IndFlatten<S> where
    S::Value: Strategy
[src]

type Tree = <S::Value as Strategy>::Tree

type Value = <S::Value as Strategy>::Value

impl<S: Strategy> Strategy for Shuffle<S> where
    S::Value: Shuffleable
[src]

type Tree = ShuffleValueTree<S::Tree>

type Value = S::Value

impl<S: Strategy, F: FilterFn<S::Value> + Clone> Strategy for proptest::strategy::statics::Filter<S, F>[src]

type Tree = Filter<S::Tree, F>

type Value = S::Value

impl<S: Strategy, F: Clone + MapFn<S::Value>> Strategy for proptest::strategy::statics::Map<S, F>[src]

type Tree = Map<S::Tree, F>

type Value = F::Output

impl<S: Strategy, F: Fn(&S::Value) -> bool> Strategy for proptest::strategy::Filter<S, F>[src]

type Tree = Filter<S::Tree, F>

type Value = S::Value

impl<S: Strategy, F: Fn(S::Value) -> Option<O>, O: Debug> Strategy for FilterMap<S, F>[src]

type Tree = FilterMapValueTree<S::Tree, F, O>

type Value = O

impl<S: Strategy, O: Debug> Strategy for MapInto<S, O> where
    S::Value: Into<O>, 
[src]

type Tree = MapInto<S::Tree, O>

type Value = O

impl<S: Strategy, O: Debug, F: Fn(S::Value) -> O> Strategy for proptest::strategy::Map<S, F>[src]

type Tree = Map<S::Tree, F>

type Value = O

impl<S: Strategy, O: Debug, F: Fn(S::Value, TestRng) -> O> Strategy for Perturb<S, F>[src]

type Tree = PerturbValueTree<S::Tree, F>

type Value = O

impl<S: Strategy, R: Strategy, F: Fn(S::Value) -> R> Strategy for IndFlattenMap<S, F>[src]

type Tree = TupleValueTree<(S::Tree, R::Tree)>

type Value = (S::Value, R::Value)

impl<T> Strategy for BTreeSetStrategy<T> where
    T: Strategy,
    T::Value: Ord
[src]

type Tree = BTreeSetValueTree<T::Tree>

type Value = BTreeSet<T::Value>

impl<T> Strategy for BinaryHeapStrategy<T> where
    T: Strategy,
    T::Value: Ord
[src]

type Tree = BinaryHeapValueTree<T::Tree>

type Value = BinaryHeap<T::Value>

impl<T> Strategy for HashSetStrategy<T> where
    T: Strategy,
    T::Value: Hash + Eq
[src]

type Tree = HashSetValueTree<T::Tree>

type Value = HashSet<T::Value>

impl<T> Strategy for LinkedListStrategy<T> where
    T: Strategy
[src]

type Tree = LinkedListValueTree<T::Tree>

type Value = LinkedList<T::Value>

impl<T> Strategy for VecDequeStrategy<T> where
    T: Strategy
[src]

type Tree = VecDequeValueTree<T::Tree>

type Value = VecDeque<T::Value>

impl<T> Strategy for OptionStrategy<T> where
    T: Strategy
[src]

type Tree = OptionValueTree<T>

type Value = Option<T::Value>

impl<T> Strategy for Select<T> where
    T: Clone + Debug + 'static, 
[src]

type Tree = SelectValueTree<T>

type Value = T

impl<T> Strategy for RegexGeneratorStrategy<T> where
    T: Debug
[src]

type Tree = RegexGeneratorValueTree<T>

type Value = T

impl<T, E> Strategy for MaybeErr<T, E> where
    T: Strategy,
    E: Strategy
[src]

type Tree = MaybeErrValueTree<T, E>

type Value = Result<T::Value, E::Value>

impl<T, E> Strategy for MaybeOk<T, E> where
    T: Strategy,
    E: Strategy
[src]

type Tree = MaybeOkValueTree<T, E>

type Value = Result<T::Value, E::Value>

impl<T: BitSetLike> Strategy for BitSetStrategy<T>[src]

type Tree = BitSetValueTree<T>

type Value = T

impl<T: BitSetLike> Strategy for SampledBitSetStrategy<T>[src]

type Tree = BitSetValueTree<T>

type Value = T

impl<T: Strategy> Strategy for VecStrategy<T>[src]

type Tree = VecValueTree<T::Tree>

type Value = Vec<T::Value>

impl<T: Strategy> Strategy for Fuse<T>[src]

type Tree = Fuse<T::Tree>

type Value = T::Value

impl<T: Strategy> Strategy for NoShrink<T>[src]

type Tree = NoShrink<T::Tree>

type Value = T::Value

impl<T: Strategy> Strategy for Union<T>[src]

type Tree = UnionValueTree<T>

type Value = T::Value

impl<T: Clone + Debug> Strategy for Just<T>[src]

type Tree = Self

type Value = T

impl<T: Debug + 'static, R: Strategy<Value = T> + 'static, F: Fn(BoxedStrategy<T>) -> R> Strategy for Recursive<T, F>[src]

type Tree = Box<dyn ValueTree<Value = T>>

type Value = T

impl<T: Debug + Clone + 'static> Strategy for Subsequence<T>[src]

type Tree = SubsequenceValueTree<T>

type Value = Vec<T>

impl<T: Debug> Strategy for BoxedStrategy<T>[src]

type Tree = Box<dyn ValueTree<Value = T>>

type Value = T

impl<T: Debug> Strategy for SBoxedStrategy<T>[src]

type Tree = Box<dyn ValueTree<Value = T>>

type Value = T

impl<T: Debug, F: Clone + Fn() -> T> Strategy for LazyJust<T, F>[src]

type Tree = Self

type Value = T

Loading content...