1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
// Copyright 2016 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![deny(missing_docs)]

//! `Supercow` is `Cow` on steroids.
//!
//! `Supercow` provides a mechanism for making APIs that accept or return very
//! general references while maintaining very low overhead for usages not
//! involving heavy-weight references (e.g, `Arc`). Though nominally similar to
//! `Cow` in structure (and being named after it), `Supercow` does not require
//! the containee to be `Clone` or `ToOwned` unless operations inherently
//! depending on either are invoked.
//!
//! `Supercow` allows you to
//!
//! - Return values with ownership semantics decided at run-time;
//!
//! - Write APIs that allow client code to manage its resources however it
//! wants;
//!
//! - Perform efficient copy-on-write and data sharing;
//!
//! - Avoid cloning until absolutely necessary, even if the point at which it
//! becomes necessary is determined dynamically.
//!
//! # Quick Start
//!
//! ## Simple Types
//!
//! In many cases, you can think of a `Supercow` as having only one lifetime
//! parameter and one type parameter, corresponding to the lifetime and type of
//! an immutable reference, i.e., `Supercow<'a, Type>` ⇒ `&'a Type`.
//!
//! ```
//! extern crate supercow;
//!
//! use std::sync::Arc;
//! use supercow::Supercow;
//!
//! // This takes a `Supercow`, so it can accept owned, borrowed, or shared
//! // values with the same API. The calls to it are annotated below.
//! //
//! // Normally a function like this would elide the lifetime and/or use an
//! // `Into` conversion, but here it is written out for clarity.
//! fn assert_is_forty_two<'a>(s: Supercow<'a, u32>) {
//!   // `Supercow` can be dereferenced just like a normal reference.
//!   assert_eq!(42, *s);
//! }
//!
//! # fn main() {
//! // Declare some data we want to reference.
//! let forty_two = 42u32;
//! // Make a Supercow referencing the above.
//! let mut a = Supercow::borrowed(&forty_two);
//! // It dereferences to the value of `forty_two`.
//! assert_is_forty_two(a.clone());             // borrowed
//! // And we can see that it actually still *points* to forty_two as well.
//! assert_eq!(&forty_two as *const u32, &*a as *const u32);
//!
//! // Clone `a` so that `b` also points to `forty_two`.
//! let mut b = a.clone();
//! assert_is_forty_two(b.clone());             // borrowed
//! assert_eq!(&forty_two as *const u32, &*b as *const u32);
//!
//! // `to_mut()` can be used to mutate `a` and `b` independently, taking
//! // ownership as needed.
//! *a.to_mut() += 2;
//! // Our immutable variable hasn't been changed...
//! assert_eq!(42, forty_two);
//! // ...but `a` now stores the new value...
//! assert_eq!(44, *a);
//! // ...and `b` still points to the unmodified variable.
//! assert_eq!(42, *b);
//! assert_eq!(&forty_two as *const u32, &*b as *const u32);
//!
//! // And now we modify `b` as well, which as before affects nothing else.
//! *b.to_mut() = 56;
//! assert_eq!(44, *a);
//! assert_eq!(56, *b);
//! assert_eq!(42, forty_two);
//!
//! // We can call `assert_is_forty_two` with an owned value as well.
//! assert_is_forty_two(Supercow::owned(42));   // owned
//!
//! // We can also use `Arc` transparently.
//! let mut c = Supercow::shared(Arc::new(42));
//! assert_is_forty_two(c.clone());             // shared
//! *c.to_mut() += 1;
//! assert_eq!(43, *c);
//! # }
//! ```
//!
//! ## Owned/Borrowed Types
//!
//! `Supercow` can have different owned and borrowed types, for example
//! `String` and `str`. In this case, the two are separate type parameters,
//! with the owned one written first. (Both need to be listed explicitly since
//! `Supercow` does not require the contained value to be `ToOwned`.)
//!
//! ```
//! extern crate supercow;
//!
//! use std::sync::Arc;
//! use supercow::Supercow;
//!
//! # fn main() {
//! let hello: Supercow<String, str> = Supercow::borrowed("hello");
//! let mut hello_world = hello.clone();
//! hello_world.to_mut().push_str(" world");
//!
//! assert_eq!(hello, "hello");
//! assert_eq!(hello_world, "hello world");
//! # }
//! ```
//!
//! ## Accepting `Supercow` in an API
//!
//! If you want to make an API taking `Supercow` values, the recommended
//! approach is to accept anything that is `Into<Supercow<YourType>>`, which
//! allows bare owned types and references to owned values to be accepted as
//! well.
//!
//! ```
//! use std::sync::Arc;
//! use supercow::Supercow;
//!
//! fn some_api_function<'a, T : Into<Supercow<'a,u32>>>
//!   (t: T) -> Supercow<'a,u32>
//! {
//!   let mut x = t.into();
//!   *x.to_mut() *= 2;
//!   x
//! }
//!
//! fn main() {
//!   assert_eq!(42, *some_api_function(21));
//!   let twenty_one = 21;
//!   assert_eq!(42, *some_api_function(&twenty_one));
//!   assert_eq!(42, *some_api_function(Arc::new(21)));
//! }
//! ```
//!
//! ## Choosing the right variant
//!
//! `Supercow` is extremely flexible as to how it internally stores and manages
//! data. There are four variants provided by default: `Supercow`,
//! `NonSyncSupercow`, `InlineSupercow`, and `InlineNonSyncSupercow`. Here is a
//! quick reference on the trade-offs:
//!
//! | Variant           | Send+Sync?    | `Rc`? | Size  | Init  | Deref      |
//! |-------------------|---------------|-------|-------|-------|------------|
//! | (Default)         | Yes           | No    | Small | Slow  | Very Fast  |
//! | `NonSync`         | No            | Yes   | Small | Slow  | Very Fast  |
//! | `Inline`          | Yes           | No    | Big   | Fast  | Fast       |
//! | `InlineNonSync`   | No            | Yes   | Big   | Fast  | Fast       |
//!
//! "Init" above specifically refers to initialisation with an owned value or
//! shared reference. Supercows constructed with mundane references always
//! construct extremely quickly.
//!
//! The only difference between the `NonSync` variant and the default is that
//! the default is to require the shared pointer type (e.g., `Arc`) to be
//! `Send` and `Sync` (which thus prohibits using `Rc`), whereas `NonSync` does
//! not and so allows `Rc`. Note that a side-effect of the default `Send +
//! Sync` requirement is that the type of `BORROWED` also needs to be `Send`
//! and `Sync` when using `Arc` as the shared reference type; if it is not
//! `Send` and `Sync`, use `NonSyncSupercow` instead.
//!
//! By default, `Supercow` boxes any owned value or shared reference. This
//! makes the `Deref` implementation faster since it does not need to account
//! for internal pointers, but more importantly, means that the `Supercow` does
//! not need to reserve space for the owned and shared values, so the default
//! `Supercow` is only one pointer wider than a bare reference.
//!
//! The obvious problem with boxing values is that it makes construction of the
//! `Supercow` slower, as one must pay for an allocation. If you want to avoid
//! the allocation, you can use the `Inline` variants instead, which store the
//! values inline inside the `Supercow`. (Note that if you are looking to
//! eliminate allocation entirely, you will also need to tinker with the
//! `SHARED` type, which by default has its own `Box` as well.) Note that this
//! of course makes the `Supercow` much bigger; be particularly careful if you
//! create a hierarchy of things containing `InlineSupercow`s referencing each
//! other, as each would effectively have space for the entire tree above it
//! inline.
//!
//! The default to box values was chosen on the grounds that it is generally
//! easier to use, less likely to cause confusing problems, and in many cases
//! the allocation doesn't affect performance:
//!
//! - In either choice, creating a `Supercow` with a borrowed reference incurs
//! no allocation. The boxed option will actually be slightly faster since it
//! does not need to initialise as much memory and results in better locality
//! due to being smaller.
//!
//! - The value contained usually is reasonably expensive to construct anyway,
//! or else there would be less incentive to pass it around as a reference when
//! possible. In these cases, the extra allocation likely is a minor impact on
//! performance.
//!
//! - Overuse of boxed values results in a "uniform slowness" that can be
//! identified reasonably easily, and results in a linear performance
//! degradation relative to overuse. Overuse of `InlineSupercow`s at best
//! results in linear memory bloat, but if `InlineSupercow`s reference
//! structures containing other `InlineSupercow`s, the result can even be
//! exponential bloat to the structures. At best, this is a harder problem to
//! track down; at worst, it can result in entirely non-obvious stack
//! overflows.
//!
//! # Use Cases
//!
//! ## More flexible Copy-on-Write
//!
//! `std::borrow::Cow` only supports two modes of ownership: You either fully
//! own the value, or only borrow it. `Rc` and `Arc` have the `make_mut()`
//! method, which allows either total ownership or shared ownership. `Supercow`
//! supports all three: owned, shared, and borrowed.
//!
//! ## More flexible Copy-if-Needed
//!
//! A major use of `Cow` in `std` is found on functions like
//! `OsStr::to_string_lossy()`, which returns a borrowed view into itself if
//! possible, or an owned string if it needed to change something. If the
//! caller does not intend to do its own writing, this is more a "copy if
//! needed" structure, and the fact that it requires the contained value to be
//! `ToOwned` limits it to things that can be cloned.
//!
//! `Supercow` only requires `ToOwned` if the caller actually intends to invoke
//! functionality which requires cloning a borrowed value, so it can fit this
//! use-case even for non-cloneable types.
//!
//! ## Working around awkward lifetimes
//!
//! This is the original case for which `Supercow` was designed.
//!
//! Say you have an API with a sort of hierarchical structure of heavyweight
//! resources, for example handles to a local database and tables within it. A
//! natural representation may be to make the table handle hold a reference to
//! the database handle.
//!
//! ```no_run
//! struct Database;
//! impl Database {
//!   fn new() -> Self {
//!     // Computation...
//!     Database
//!   }
//!   fn close(self) -> bool {
//!     // E.g., it returns an error on failure or something
//!     true
//!   }
//! }
//! impl Drop for Database {
//!   fn drop(&mut self) {
//!     println!("Dropping database");
//!   }
//! }
//! struct Table<'a>(&'a Database);
//! impl<'a> Table<'a> {
//!   fn new(db: &'a Database) -> Self {
//!     // Computation...
//!     Table(db)
//!   }
//! }
//! impl<'a> Drop for Table<'a> {
//!   fn drop(&mut self) {
//!     println!("Dropping table");
//!     // Notify `self.db` about this
//!   }
//! }
//! ```
//!
//! We can use this quite easily:
//!
//! ```
//! # struct Database;
//! # impl Database {
//! #   fn new() -> Self {
//! #     // Computation...
//! #     Database
//! #   }
//! #   fn close(self) -> bool {
//! #     // E.g., it returns an error on failure or something
//! #     true
//! #   }
//! # }
//! # impl Drop for Database {
//! #   fn drop(&mut self) {
//! #     println!("Dropping database");
//! #   }
//! # }
//! # struct Table<'a>(&'a Database);
//! # impl<'a> Table<'a> {
//! #   fn new(db: &'a Database) -> Self {
//! #     // Computation...
//! #     Table(db)
//! #   }
//! # }
//! # impl<'a> Drop for Table<'a> {
//! #   fn drop(&mut self) {
//! #     println!("Dropping table");
//! #     // Notify `self.db` about this
//! #   }
//! # }
//!
//! # #[allow(unused_variables)]
//! fn main() {
//!   let db = Database::new();
//!   {
//!     let table1 = Table::new(&db);
//!     let table2 = Table::new(&db);
//!     do_stuff(&table1);
//!     // Etc
//!   }
//!   assert!(db.close());
//! }
//!
//! # #[allow(unused_variables)]
//! fn do_stuff(table: &Table) {
//!   // Stuff
//! }
//! ```
//!
//! That is, until we want to hold the database and the tables in a struct.
//!
//! ```ignore
//! struct Resources {
//!   db: Database,
//!   table: Table<'uhhh>, // Uh, what is the lifetime here?
//! }
//! ```
//!
//! There are several options here:
//!
//! - Change the API to use `Arc`s or similar. This works, but adds overhead
//! for clients that don't need it, and additionally removes from everybody the
//! ability to statically know whether `db.close()` can be called.
//!
//! - Force clients to resort to unsafety, such as
//! [`OwningHandle`](http://kimundi.github.io/owning-ref-rs/owning_ref/struct.OwningHandle.html).
//! This sacrifices no performance and allows the stack-based client usage to
//! be able to call `db.close()` easily, but makes things much more difficult
//! for other clients.
//!
//! - Take a `Borrow` type parameter. This works and is zero-overhead, but
//! results in a proliferation of generics throughout the API and client code,
//! and becomes especially problematic when the hierarchy is multiple such
//! levels deep.
//!
//! - Use `Supercow` to get the best of both worlds.
//!
//! We can adapt and use the API like so:
//!
//! ```
//! use std::sync::Arc;
//!
//! use supercow::Supercow;
//!
//! struct Database;
//! impl Database {
//!   fn new() -> Self {
//!     // Computation...
//!     Database
//!   }
//!   fn close(self) -> bool {
//!     // E.g., it returns an error on failure or something
//!     true
//!   }
//! }
//! impl Drop for Database {
//!   fn drop(&mut self) {
//!     println!("Dropping database");
//!   }
//! }
//! struct Table<'a>(Supercow<'a, Database>);
//! impl<'a> Table<'a> {
//!   fn new<T : Into<Supercow<'a, Database>>>(db: T) -> Self {
//!     // Computation...
//!     Table(db.into())
//!   }
//! }
//! impl<'a> Drop for Table<'a> {
//!   fn drop(&mut self) {
//!     println!("Dropping table");
//!     // Notify `self.db` about this
//!   }
//! }
//!
//! // The original stack-based code, unmodified
//!
//! # #[allow(unused_variables)]
//! fn on_stack() {
//!   let db = Database::new();
//!   {
//!     let table1 = Table::new(&db);
//!     let table2 = Table::new(&db);
//!     do_stuff(&table1);
//!     // Etc
//!   }
//!   assert!(db.close());
//! }
//!
//! // If we only wanted one Table and didn't care about ever getting the
//! // Database back, we don't even need a reference.
//! fn by_value() {
//!   let db = Database::new();
//!   let table = Table::new(db);
//!   do_stuff(&table);
//! }
//!
//! // And we can declare our holds-everything struct by using `Arc`s to deal
//! // with ownership.
//! struct Resources {
//!   db: Arc<Database>,
//!   table: Table<'static>,
//! }
//! impl Resources {
//!   fn new() -> Self {
//!     let db = Arc::new(Database::new());
//!     let table = Table::new(db.clone());
//!     Resources { db: db, table: table }
//!   }
//!
//!   fn close(self) -> bool {
//!     drop(self.table);
//!     Arc::try_unwrap(self.db).ok().unwrap().close()
//!   }
//! }
//!
//! fn with_struct() {
//!   let res = Resources::new();
//!   do_stuff(&res.table);
//!   assert!(res.close());
//! }
//!
//! # #[allow(unused_variables)]
//! fn do_stuff(table: &Table) {
//!   // Stuff
//! }
//!
//! ```
//!
//! # Conversions
//!
//! To facilitate client API designs, `Supercow` converts (via `From`/`Into`)
//! from a number of things. Unfortunately, due to trait coherence rules, this
//! does not yet apply in all cases where one might hope. The currently
//! available conversions are:
//!
//! - The `OWNED` type into an owned `Supercow`. This applies without
//! restriction.
//!
//! - A reference to the `OWNED` type. References to a different `BORROWED`
//! type are currently not convertible; `Supercow::borrowed()` will be needed
//! to construct the `Supercow` explicitly.
//!
//! - `Rc<OWNED>` and `Arc<OWNED>` for `Supercow`s where `OWNED` and `BORROWED`
//! are the exact same type, and where the `Rc` or `Arc` can be converted into
//! `SHARED` via `supercow::ext::SharedFrom`. If `OWNED` and `BORROWED` are
//! different types, `Supercow::shared()` will be needed to construct the
//! `Supercow` explicitly.
//!
//! # Advanced
//!
//! ## Variance
//!
//! `Supercow` is covariant on its lifetime and all its type parameters, except
//! for `SHARED` which is invariant. The default `SHARED` type for both
//! `Supercow` and `NonSyncSupercow` uses the `'static` lifetime, so simple
//! `Supercow`s are in general covariant.
//!
//! ```
//! use std::rc::Rc;
//!
//! use supercow::Supercow;
//!
//! fn assert_covariance<'a, 'b: 'a>(
//!   imm: Supercow<'b, u32>,
//!   bor: &'b Supercow<'b, u32>)
//! {
//!   let _imm_a: Supercow<'a, u32> = imm;
//!   let _bor_aa: &'a Supercow<'a, u32> = bor;
//!   let _bor_ab: &'a Supercow<'b, u32> = bor;
//!   // Invalid, since the external `&'b` reference is declared to live longer
//!   // than the internal `&'a` reference.
//!   // let _bor_ba: &'b Supercow<'a, u32> = bor;
//! }
//!
//! # fn main() { }
//! ```
//!
//! ## `Sync` and `Send`
//!
//! A `Supercow` is `Sync` and `Send` iff the types it contains, including the
//! shared reference type, are.
//!
//! ```
//! use supercow::Supercow;
//!
//! fn assert_sync_and_send<T : Sync + Send>(_: T) { }
//! fn main() {
//!   let s: Supercow<u32> = Supercow::owned(42);
//!   assert_sync_and_send(s);
//! }
//! ```
//!
//! ## Shared Reference Type
//!
//! The third type parameter type to `Supercow` specifies the shared reference
//! type.
//!
//! The default is `Box<DefaultFeatures<'static>>`, which is a boxed trait
//! object describing the features a shared reference type must have while
//! allowing any such reference to be used without needing a generic type
//! argument.
//!
//! An alternate feature set can be found in `NonSyncFeatures`, which is also
//! usable through the `NonSyncSupercow` typedef (which also makes it
//! `'static`). You can create custom feature traits in this style with
//! `supercow_features!`.
//!
//! It is perfectly legal to use a non-`'static` shared reference type. In
//! fact, the original design for `Supercow<'a>` used `DefaultFeatures<'a>`.
//! However, a non-`'static` lifetime makes the system harder to use, and if
//! entangled with `'a` on `Supercow`, makes the structure lifetime-invariant,
//! which makes it much harder to treat as a reference.
//!
//! Boxing the shared reference and putting it behind a trait object both add
//! overhead, of course. If you wish, you can use a real reference type in the
//! third parameter as long as you are OK with losing the flexibility the
//! boxing would provide. For example,
//!
//! ```
//! use std::rc::Rc;
//!
//! use supercow::Supercow;
//!
//! # fn main() {
//! let x: Supercow<u32, u32, Rc<u32>> = Supercow::shared(Rc::new(42u32));
//! println!("{}", *x);
//! # }
//! ```
//!
//! Note that you may need to provide an identity `supercow::ext::SharedFrom`
//! implementation if you have a custom reference type.
//!
//! ## Storage Type
//!
//! When in owned or shared mode, a `Supercow` needs someplace to store the
//! `OWNED` or `SHARED` value itself. This can be customised with the fourth
//! type parameter (`STORAGE`), and the `OwnedStorage` trait. Two strategies
//! are provided by this crate:
//!
//! - `BoxedStorage` puts everything behind `Box`es. This has the advantage
//! that the `Supercow` structure is only one pointer wider than a basic
//! reference, and results in a faster `Deref`. The obvious drawback is that
//! you pay for allocations on construction. This is the default with
//! `Supercow` and `NonSyncSupercow`.
//!
//! - `InlineStorage` uses an `enum` to store the values inline in the
//! `Supercow`, thus incurring no allocation, but making the `Supercow` itself
//! bigger. This is easily available via the `InlineSupercow` and
//! `InlineNonSyncSupercow` types.
//!
//! If you find some need, you can define custom storage types, though note
//! that the trait is quite unsafe and somewhat subtle.
//!
//! ## `PTR` type
//!
//! The `PTR` type is used to consolidate the implementations of `Supercow` and
//! `Phantomcow`; there is likely little, if any, use for ever using anything
//! other than `*const BORROWED` or `()` here.
//!
//! # Performance Considerations
//!
//! ## Construction Cost
//!
//! Since it inherently moves certain decisions about ownership from
//! compile-time to run-time, `Supercow` is obviously not as fast as using an
//! owned value directly or a reference directly.
//!
//! Constructing any kind of `Supercow` with a normal reference is very fast,
//! only requiring a bit of internal memory initialisation besides setting the
//! reference itself.
//!
//! The default `Supercow` type boxes the owned type and double-boxes the shared
//! type. This obviously dominates construction cost in those cases.
//!
//! `InlineSupercow` eliminates one box layer. This means that constructing an
//! owned instance is simply a move of the owned structure plus the common
//! reference initialisation. Shared values still by default require one boxing
//! level as well as virtual dispatch on certain operations; as described
//! above, this property too can be dealt with by using a custom `SHARED` type.
//!
//! ## Destruction Cost
//!
//! Destroying a `Supercow` is roughly the same proportional cost of creating
//! it.
//!
//! ## `Deref` Cost
//!
//! For the default `Supercow` type, the `Deref` is exactly equivalent to
//! dereferencing an `&&BORROWED`.
//!
//! For `InlineSupercow`, the implementation is a bit slower, comparable to
//! `std::borrow::Cow` but with fewer memory accesses..
//!
//! In all cases, the `Deref` implementation is not dependent on the ownership
//! mode of the `Supercow`, and so is not affected by the shared reference
//! type, most importantly, making no virtual function calls even under the
//! default boxed shared reference type. However, the way it works could
//! prevent LLVM optimisations from applying in particular circumstances.
//!
//! For those wanting specifics, the function
//!
//! ```ignore
//! // Substitute Cow with InlineSupercow for the other case.
//! // This takes references so that the destructor code is not intermingled.
//! fn add_two(a: &Cow<u32>, b: &Cow<u32>) -> u32 {
//!   **a + **b
//! }
//! ```
//!
//! results in the following on AMD64 with Rust 1.13.0:
//!
//! ```text
//!  Cow                                Supercow
//!  cmp    DWORD PTR [rdi],0x1         mov    rcx,QWORD PTR [rdi]
//!  lea    rcx,[rdi+0x4]               xor    eax,eax
//!  cmovne rcx,QWORD PTR [rdi+0x8]     cmp    rcx,0x800
//!  cmp    DWORD PTR [rsi],0x1         cmovae rdi,rax
//!  lea    rax,[rsi+0x4]               mov    rdx,QWORD PTR [rsi]
//!  cmovne rax,QWORD PTR [rsi+0x8]     cmp    rdx,0x800
//!  mov    eax,DWORD PTR [rax]         cmovb  rax,rsi
//!  add    eax,DWORD PTR [rcx]         mov    eax,DWORD PTR [rax+rdx]
//!  ret                                add    eax,DWORD PTR [rdi+rcx]
//!                                     ret
//! ```
//!
//! The same code on ARM v7l and Rust 1.12.1:
//!
//! ```text
//!  Cow                                Supercow
//!  push       {fp, lr}                ldr     r2, [r0]
//!  mov        r2, r0                  ldr     r3, [r1]
//!  ldr        r3, [r2, #4]!           cmp     r2, #2048
//!  ldr        ip, [r0]                addcc   r2, r2, r0
//!  mov        r0, r1                  cmp     r3, #2048
//!  ldr        lr, [r0, #4]!           addcc   r3, r3, r1
//!  ldr        r1, [r1]                ldr     r0, [r2]
//!  cmp        ip, #1                  ldr     r1, [r3]
//!  moveq      r3, r2                  add     r0, r1, r0
//!  cmp        r1, #1                  bx      lr
//!  ldr        r2, [r3]
//!  moveq      lr, r0
//!  ldr        r0, [lr]
//!  add        r0, r0, r2
//!  pop        {fp, pc}
//! ```
//!
//! If the default `Supercow` is used above instead of `InlineSupercow`, the
//! function actually compiles to the same thing as one taking two `&u32`
//! arguments. (This is partially due to optimisations eliminating one level of
//! indirection; if the optimiser did not do as much, it would be equivalent to
//! taking two `&&u32` arguments.)
//!
//! ## `to_mut` Cost
//!
//! Obtaining a `Ref` is substantially more expensive than `Deref`, as it must
//! inspect the ownership mode of the `Supercow` and possibly move it into the
//! owned mode. This will include a virtual call to the boxed shared reference
//! if in shared mode when using the default `Supercow` shared reference type.
//!
//! There is also cost in releasing the mutable reference, though
//! insubstantial in comparison.
//!
//! ## Memory Usage
//!
//! The default `Supercow` is only one pointer wider than a mundane reference
//! on Rust 1.13.0 and later. Earlier Rust versions have an extra word due to
//! the drop flag.
//!
//! ```
//! use std::mem::size_of;
//!
//! use supercow::Supercow;
//!
//! // Determine the size of the drop flag including alignment padding.
//! // On Rust 0.13.0+, `dflag` will be zero.
//! struct DropFlag(*const ());
//! impl Drop for DropFlag { fn drop(&mut self) { } }
//! let dflag = size_of::<DropFlag>() - size_of::<*const ()>();
//!
//! assert_eq!(size_of::<&'static u32>() + size_of::<*const ()>() + dflag,
//!            size_of::<Supercow<'static, u32>>());
//!
//! assert_eq!(size_of::<&'static str>() + size_of::<*const ()>() + dflag,
//!            size_of::<Supercow<'static, String, str>>());
//! ```
//!
//! Of course, you also pay for heap space in this case when using owned or
//! shared `Supercow`s.
//!
//! `InlineSupercow` can be quite large in comparison to a normal reference.
//! You need to be particularly careful that structures you reference don't
//! themselves contain `InlineSupercow`s or you can end up with
//! quadratically-sized or even exponentially-sized structures.
//!
//! ```
//! use std::mem;
//!
//! use supercow::InlineSupercow;
//!
//! // Define our structures
//! struct Big([u8;1024]);
//! struct A<'a>(InlineSupercow<'a, Big>);
//! struct B<'a>(InlineSupercow<'a, A<'a>>);
//! struct C<'a>(InlineSupercow<'a, B<'a>>);
//!
//! // Now say an API consumer, etc, decides to use references
//! let big = Big([0u8;1024]);
//! let a = A((&big).into());
//! let b = B((&a).into());
//! let c = C((&b).into());
//!
//! // Well, we've now allocated space for four `Big`s on the stack, despite
//! // only really needing one.
//! assert!(mem::size_of_val(&big) + mem::size_of_val(&a) +
//!         mem::size_of_val(&b) + mem::size_of_val(&c) >
//!         4 * mem::size_of::<Big>());
//! ```
//!
//! # Other Notes
//!
//! Using `Supercow` will not give your application `apt-get`-style Super Cow
//! Powers.

pub mod ext;

use std::borrow::Borrow;
use std::cmp;
use std::convert::AsRef;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::ptr;
use std::rc::Rc;
use std::sync::Arc;

use self::ext::*;

/// Defines a "feature set" for a custom `Supercow` type.
///
/// ## Syntax
///
/// ```
/// #[macro_use] extern crate supercow;
///
/// # pub trait SomeTrait { }
/// # pub trait AnotherTrait { }
///
/// supercow_features!(
///   /// Some documentation, etc, if desired.
///   pub trait FeatureName: SomeTrait, AnotherTrait);
/// supercow_features!(
///   pub trait FeatureName2: SomeTrait, Clone, AnotherTrait);
///
/// # fn main() { }
/// ```
///
/// ## Semantics
///
/// A public trait named `FeatureName` is defined which extends all the listed
/// traits, minus special cases below.
///
/// If `Clone` is listed, the trait gains a `clone_boxed()` method and
/// `Box<FeatureName>` is `Clone`.
///
/// If `TwoStepShared(SomeType)` is listed, the boxed type will implement
/// `TwoStepShared` for all `OWNED`/`BORROWED` pairs where
/// `SomeType<OWNED,BORROWED>` implements the feature a whole and
/// `OWNED: SafeBorrow<BORROWED>`.
///
/// All types which implement all the listed traits (including special cases)
/// implement `FeatureName`.

// Historical note: Originally, the shared type was required to implement
// `ConstDeref`, and so the shared type was `Box<$feature<Target = BORROWED>>`.
// This mostly worked, but it confused lifetime inference in a number of
// cases, particularly surrounding variance. Because of that, we instead have
// stricter requirements on a number of traits (including making `SharedFrom`
// unsafe) so that we can pull the pointer out of the non-boxed shared
// reference and hold onto it thereon out, thus obviating the need for `SHARED`
// to carry that part of the type information.
#[macro_export]
macro_rules! supercow_features {
    // Since we have special cases (and sometimes syntax) for the trait list,
    // handling the trait list is a bit difficult. Basically, we need to
    // massage it into a form where we can properly match everything at once.
    //
    // What we basically do here is match the head token tree one at a time,
    // and move it into one of several bracketed lists that come before the
    // unparsed list. This allows us to match the special cases.
    //
    // The bracketed lists are:
    //
    // - Clone. Either empty or `[Clone clone_boxed]`. There needs to be
    // useful tokens to match here so that we can "iterate" over them to
    // conditionally generate related code.
    //
    // - Two-step. Contains just the bare inner type. We "iterate" over the
    // type to conditionally generate the related code.
    //
    // - Everything else. A comma-separated list of identifiers.
    ($(#[$meta:meta])* pub trait $feature_name:ident: $($stuff:tt)*) => {
        supercow_features!(@_ACCUM $(#[$meta])* pub trait $feature_name:
                           [] [] [] $($stuff)*);
    };

    // Special case for Clone
    (@_ACCUM $(#[$meta:meta])* pub trait $feature_name:ident:
     $clone:tt $twostep:tt [$($others:tt),*] Clone $($more:tt)*) => {
        supercow_features!(@_ACCUM $(#[$meta])* pub trait $feature_name:
                           [Clone clone_boxed] $twostep [$($others)*]
                           $($more)*);
    };

    // Special case for Two-Step
    (@_ACCUM $(#[$meta:meta])* pub trait $feature_name:ident:
     $clone:tt $twostep:tt [$($others:tt),*]
     TwoStepShared($($inner:tt)*)
     $($more:tt)*) => {
        supercow_features!(@_ACCUM $(#[$meta])* pub trait $feature_name:
                           $clone [$($inner)*] [$($others)*]
                           $($more)*);
    };

    // Since we match token-trees instead of identifiers or similar, we get
    // comma as a bare token. Simply throw it away.
    //
    // This does mean people can invoke the macro without the commata, though
    // we don't officially support it. It would be possible to adjust the macro
    // to reject invocations missing commas, but there the error would not be
    // particularly clear, so for now just be tolerant.
    (@_ACCUM $(#[$meta:meta])* pub trait $feature_name:ident:
     $clone:tt $twostep:tt [$($others:tt),*], $($more:tt)*) => {
        supercow_features!(@_ACCUM $(#[$meta])* pub trait $feature_name:
                           $clone $twostep [$($others)*] $($more)*);
    };

    // General case for non-special traits.
    (@_ACCUM $(#[$meta:meta])* pub trait $feature_name:ident:
     $clone:tt $twostep:tt [$($others:ident),*] $other:ident $($more:tt)*) => {
        supercow_features!(@_ACCUM $(#[$meta])* pub trait $feature_name:
                           $clone $twostep [$($others, )* $other]
                           $($more)*);
    };

    // Once there's no unexamined items left, we can actually fall through to
    // defining stuff.
    (@_ACCUM $(#[$meta:meta])* pub trait $feature_name:ident:
     $clone:tt $twostep:tt [$($others:ident),*]) => {
        supercow_features!(@_DEFINE $(#[$meta])* pub trait $feature_name:
                           $clone $twostep [$($others),*]);
    };

    (@_DEFINE $(#[$meta:meta])*
     pub trait $feature_name:ident:
     [$($clone:ident $clone_boxed:ident)*]
     [$($twostep_inner:ident)*]
     [$($req:ident),*]) => {
        $(#[$meta])*
        pub trait $feature_name<'a>: $($req +)* 'a {
            // NB "Iterate" over the clone section to conditionally generate
            // this code.
            $(
            /// Clone this value, and then immediately put it into a `Box`
            /// behind a trait object of this trait.
            fn $clone_boxed(&self) -> Box<$feature_name<'a> + 'a>;
            )*

            /// Returns the address of `self`.
            ///
            /// This is used to disassemble trait objects of this trait without
            /// resorting to transmuting or the unstable `TraitObject` type.
            fn self_address_mut(&mut self) -> *mut ();
        }
        impl<'a, T : 'a + $($req +)* $($clone +)* Sized>
        $feature_name<'a> for T {
            $(
            fn $clone_boxed(&self) -> Box<$feature_name<'a> + 'a> {
                let cloned: T = self.clone();
                Box::new(cloned)
            }
            )*

            fn self_address_mut(&mut self) -> *mut () {
                self as *mut Self as *mut ()
            }
        }
        // This implementation is safe -- all we do is move `T`, so if `T` is
        // `ConstDeref`, its returned address will not be affected.
        unsafe impl<'a, T : $feature_name<'a>> $crate::ext::SharedFrom<T>
        for Box<$feature_name<'a> + 'a> {
            fn shared_from(t: T) -> Self {
                Box::new(t)
            }
        }
        $(
        impl<'a> $clone for Box<$feature_name<'a> + 'a> {
            fn clone(&self) -> Self {
                $feature_name::clone_boxed(&**self)
            }
        }
        )*
        $(
        impl<'a, S : 'a + ?Sized, T : 'a> $crate::ext::TwoStepShared<T, S>
        for Box<$feature_name<'a> + 'a>
        where T : $crate::ext::SafeBorrow<S>,
              $twostep_inner<T,S> : $feature_name<'a> {
            fn new_two_step() -> Self {
                Box::new(
                    <$twostep_inner<T,S> as $crate::ext::TwoStepShared<T, S>>::
                    new_two_step())
            }

            unsafe fn deref_holder(&mut self) -> &mut Option<T> {
                <$twostep_inner<T,S> as $crate::ext::TwoStepShared<T, S>>::
                deref_holder(
                    // Unsafe downcast from $feature_name to the declared
                    // two-step type. This is safe since the contract of
                    // `deref_holder()` guarantees that this value was
                    // constructed by `new_two_step()`.
                    &mut* ($feature_name::self_address_mut(&mut **self)
                           as *mut $twostep_inner<T,S>))
            }
        }
        )*
    };
}

supercow_features!(
    /// The default shared reference type for `Supercow`.
    ///
    /// This requires the shared reference type to be `Clone`, `Send`, and
    /// `Sync`, which thus disqualifies using `Rc`. This was chosen as the
    /// default since the inability to use `Rc` is generally a less subtle
    /// issue than the `Supercow` not being `Send` or `Sync`.
    ///
    /// See also `NonSyncFeatures`.
    pub trait DefaultFeatures: Clone, TwoStepShared(TwoStepArc), Send, Sync);
supercow_features!(
    /// The shared reference type for `NonSyncSupercow`.
    ///
    /// Unlike `DefaultFeatures`, this only requires the shared reference type
    /// to be `Clone`, thus permitting `Rc`.
    pub trait NonSyncFeatures: Clone, TwoStepShared(TwoStepRc));

/// `Supercow` with the default `SHARED` changed to `NonSyncFeatures`, enabling
/// the use of `Rc` as a shared reference type as well as making it possible to
/// use non-`Send` or non-`Sync` `BORROWED` types easily.
///
/// Note that the `SHARED` type must have `'static` lifetime, since this is
/// generally more convenient and makes the `Supercow` as a whole covariant.
///
/// ## Example
///
/// ```
/// use supercow::{NonSyncSupercow, Supercow};
///
/// # fn main() {
/// let x: NonSyncSupercow<u32> = Supercow::owned(42u32);
/// println!("{}", *x);
/// # }
/// ```
pub type NonSyncSupercow<'a, OWNED, BORROWED = OWNED> =
    Supercow<'a, OWNED, BORROWED,
             Box<NonSyncFeatures<'static> + 'static>,
             BoxedStorage>;

/// `Supercow` with the default `STORAGE` changed to `InlineStorage`.
///
/// This reduces the number of allocations needed to construct an owned or
/// shared `Supercow` (down to zero for owned, but note that the default
/// `SHARED` still has its own `Box`) at the cost of bloating the `Supercow`
/// itself, as it now needs to be able to fit a whole `OWNED` instance.
pub type InlineSupercow<'a, OWNED, BORROWED = OWNED,
                       SHARED = Box<DefaultFeatures<'static> + 'static>> =
    Supercow<'a, OWNED, BORROWED, SHARED, InlineStorage<OWNED, SHARED>>;

/// `NonSyncSupercow` with the `STORAGE` changed to `InlineStorage`.
///
/// This combines both properties of `NonSyncSupercow` and `InlineSupercow`.
pub type InlineNonSyncSupercow<'a, OWNED, BORROWED = OWNED> =
    Supercow<'a, OWNED, BORROWED,
             Box<NonSyncFeatures<'static> + 'static>,
             InlineStorage<OWNED, Box<NonSyncFeatures<'static> + 'static>>>;

/// The actual generic reference type.
///
/// See the module documentation for most of the details.
///
/// Most of the generics requirements you don't need to pay too much attention
/// to if you aren't making custom `SHARED` or `STORAGE` types, etc. In
/// general:
///
/// - `OWNED` may be constrained to be `Clone` and/or `BORROWED` as `ToOwned`
/// if cloning an inner value is needed.
///
/// - External traits are defined against `BORROWED`.
///
/// - `PTR : PtrRead<BORROWED>` means the operation is not available on
/// `Phantomcow`.
pub struct Supercow<'a, OWNED, BORROWED : ?Sized = OWNED,
                    SHARED = Box<DefaultFeatures<'static> + 'static>,
                    STORAGE = BoxedStorage, PTR = *const BORROWED>
where BORROWED : 'a,
      *const BORROWED : PointerFirstRef,
      STORAGE : OwnedStorage<OWNED, SHARED>,
      PTR : PtrWrite<BORROWED> {
    // This stores the precalculated `Deref` target, and is the only thing the
    // `Deref` implementation needs to inspect.
    //
    // Note that there are three cases with this pointer:
    //
    // - A pointer to an external value. In this case, we know that the pointer
    // will not be invalidated by movement or for the lifetime of `'a` and
    // simply store the reference here as an absolute address.
    //
    // - A pointer to a ZST at an "external" location, often address 1. We
    // don't need to handle this in any particular manner as long as we don't
    // accidentally make a null reference during deref(), since the only thing
    // safe rust can do with a ZST reference is inspect its address, and if we
    // do "move" it around, there's nothing unsafe from this fact being leaked.
    //
    // - A pointer into this `Supercow`. In this case, the absolute address
    // will change whenever this `Supercow` is relocated. To handle this, we
    // instead store the offset from `&self` here, and adjust it at `Deref`
    // time. We differentiate between the two cases by inspecting the absolute
    // value of the address: If it is less than
    // `MAX_INTERNAL_BORROW_DISPLACEMENT*2`, we assume it is an internal
    // pointer, since no modern system ever has virtual memory mapped between 0
    // and 4kB (and any code elsewhere involving this region is presumably too
    // low-level to be using `Supercow`).
    //
    // One peculiarity is that this is declared as a typed pointer even though
    // it does not necessarily point to anything (due to internal pointers).
    // This is so that it works with DSTs, which have pointers larger than
    // simple machine pointers. We assume the first pointer-sized value is the
    // actual address (see `PointerFirstRef`).
    //
    // If `STORAGE` does not use internal pointers, we can skip all the
    // arithmetic and return this value unmodified.
    ptr: PTR,
    // The current ownership mode of this `Supercow`.
    //
    // This has three states:
    //
    // - Null. The `Supercow` holds a `&'a BORROWED`.
    //
    // - Even alignment. The `Supercow` holds an `OWNED` accessible via
    // `STORAGE` field a, and this value is what is passed into the `STORAGE`
    // methods.
    //
    // - Odd alignment. The `Supercow` holds a `SHARED`, accessible via
    // `STORAGE` field b, with a pointer value one less than this one. Note
    // that since the default `SHARED` is a `Box<DefaultFeatures>`, we actually
    // end up with two levels of boxing here for `BoxedStorage`. This is
    // actually necessary so that the whole thing only takes one immediate
    // pointer.
    mode: *mut (),
    storage: STORAGE,

    _owned: PhantomData<OWNED>,
    _borrowed: PhantomData<&'a BORROWED>,
    _shared: PhantomData<SHARED>,
}

/// `Phantomcow<'a, Type>` is to `Supercow<'a, Type>` as
/// `PhantomData<&'a Type>` is to `&'a Type`.
///
/// That is, `Phantomcow` effects a lifetime dependency on the borrowed value,
/// while still permitting the owned and shared modes of `Supercow`, and
/// keeping the underlying objects alive as necessary.
///
/// There is not much one can do with a `Phantomcow`; it can be moved around,
/// and in some cases cloned. Its main use is in FFI wrappers, where `BORROWED`
/// maintains some external state or resource that will be destroyed when it
/// is, and which the owner of the `Phantomcow` depends on to function.
///
/// The size of a `Phantomcow` is generally equal to the size of the
/// corresponding `Supercow` type minus the size of `&'a BORROWED`, though this
/// may not be exact depending on `STORAGE` alignment, etc.
pub type Phantomcow<'a, OWNED, BORROWED = OWNED,
                    SHARED = Box<DefaultFeatures<'static> + 'static>,
                    STORAGE = BoxedStorage> =
    Supercow<'a, OWNED, BORROWED, SHARED, STORAGE, ()>;

/// The `Phantomcow` variant corresponding to `NonSyncSupercow`.
pub type NonSyncPhantomcow<'a, OWNED, BORROWED = OWNED> =
    Phantomcow<'a, OWNED, BORROWED, Box<NonSyncFeatures<'static> + 'static>,
               BoxedStorage>;

/// The `Phantomcow` variant corresponding to `InlineStorage`.
pub type InlinePhantomcow<'a, OWNED, BORROWED = OWNED,
                          SHARED = Box<DefaultFeatures<'static> + 'static>> =
    Phantomcow<'a, OWNED, BORROWED, SHARED, InlineStorage<OWNED, SHARED>>;

/// The `Phantomcow` variant corresponding to `InlineNonSyncSupercow`.
pub type InlineNonSyncPhantomcow<'a, OWNED, BORROWED = OWNED> =
    Phantomcow<'a, OWNED, BORROWED, Box<NonSyncFeatures<'static> + 'static>,
             InlineStorage<OWNED, Box<NonSyncFeatures<'static> + 'static>>>;

enum SupercowMode {
    Owned(*mut ()),
    Borrowed,
    Shared(*mut ()),
}

impl SupercowMode {
    fn from_ptr(mode: *mut ()) -> Self {
        if mode.is_null() {
            Borrowed
        } else if mode.is_2_aligned() {
            Owned(mode)
        } else {
            Shared(mode.align2())
        }
    }
}

use self::SupercowMode::*;

macro_rules! defimpl {
    ($(@$us:tt)* [$($tparm:ident $(: ?$tparmsized:ident)*),*] ($($spec:tt)*)
     where { $($wo:tt)* } $body:tt) => {
        $($us)* impl<'a, $($tparm $(: ?$tparmsized)*,)* OWNED,
             BORROWED : ?Sized, SHARED, STORAGE, PTR>
            $($spec)* Supercow<'a, OWNED, BORROWED, SHARED, STORAGE, PTR>
        where BORROWED : 'a,
              *const BORROWED : PointerFirstRef,
              STORAGE : OwnedStorage<OWNED, SHARED>,
              PTR : PtrWrite<BORROWED>,
              $($wo)*
            $body
    }
}

defimpl! {[] (Drop for) where { } {
    fn drop(&mut self) {
        match self.mode() {
            Owned(ptr) => unsafe { self.storage.deallocate_a(ptr) },
            Shared(ptr) => unsafe { self.storage.deallocate_b(ptr) },
            Borrowed => (),
        }
    }
} }

defimpl! {@unsafe [] (Send for) where {
    OWNED : Send,
    &'a BORROWED : Send,
    SHARED : Send,
    STORAGE : Send,
} { } }

defimpl! {@unsafe [] (Sync for) where {
    OWNED : Sync,
    &'a BORROWED : Sync,
    SHARED : Sync,
    STORAGE : Sync,
} { } }

defimpl! {[] () where { } {
    /// Creates a new `Supercow` which owns the given value.
    ///
    /// This can create a `Supercow` with a `'static` lifetime.
    pub fn owned(inner: OWNED) -> Self
    where OWNED : SafeBorrow<BORROWED> {
        // Safety: The invalid `ptr` does not escape; either the function sets
        // it properly, or panics and the value is destroyed.
        let mut this = unsafe { Self::empty() };
        this.mode = this.storage.allocate_a(inner);
        // This line could panic, but the only thing that has not yet been
        // initialised properly is `ptr`, which is immaterial since the
        // `Supercow` will not escape this frame if this panics, and `Drop`
        // does not care about `ptr`.
        //
        // Safety: We know that the value is in owned mode since we just
        // constructed it.
        unsafe { this.borrow_owned(); }
        this
    }

    /// Creates a new `Supercow` which borrows the given value.
    pub fn borrowed<T : Borrow<BORROWED> + ?Sized>(inner: &'a T) -> Self {
        // Safety: The invalid `ptr` value will be overwritten before this
        // function returns, and the value is destroyed on panic.
        let mut this = unsafe { Self::empty() };
        // No need to write to `mode`; `empty()` returns a borrowed-mode
        // `Supercow`.
        this.ptr.store_ptr(inner.borrow() as *const BORROWED);
        this
    }

    /// Creates a new `Supercow` using the given shared reference.
    ///
    /// The reference must be convertible to `SHARED` via `SharedFrom`.
    pub fn shared<T>(inner: T) -> Self
    where T : ConstDeref<Target = BORROWED>,
          SHARED : SharedFrom<T> {
        let mut ptr = PTR::new();
        ptr.store_ptr(inner.const_deref());
        Self::shared_nocvt(SHARED::shared_from(inner), ptr)
    }

    fn shared_nocvt(shared: SHARED, ptr: PTR) -> Self {
        // Safety: The invalid `ptr` value will be overwritten before this
        // function returns, and the value is destroyed on panic.
        let mut this = unsafe { Self::empty() };
        // If something panics below, `ptr` is may become a dangling pointer.
        // That's fine, though, because the `Supercow` will not escape the
        // frame and `Drop` does not inspect `ptr`.
        this.ptr = ptr;
        this.mode = this.storage.allocate_b(shared).unalign2() as *mut ();
        this
    }

    /// If `this` is non-owned, clone `this` and return it.
    ///
    /// Otherwise, return `None`.
    ///
    /// ## Example
    ///
    /// ```
    /// use supercow::Supercow;
    ///
    /// struct SomeNonCloneThing;
    ///
    /// let owned: Supercow<SomeNonCloneThing> = SomeNonCloneThing.into();
    /// assert!(Supercow::clone_non_owned(&owned).is_none());
    ///
    /// let the_thing = SomeNonCloneThing;
    /// let borrowed: Supercow<SomeNonCloneThing> = (&the_thing).into();
    /// let also_borrowed = Supercow::clone_non_owned(&borrowed).unwrap();
    /// ```
    pub fn clone_non_owned(this: &Self) -> Option<Self>
    where SHARED : Clone {
        match this.mode() {
            Owned(_) => None,

            Borrowed => Some(Supercow {
                ptr: this.ptr,
                mode: this.mode,
                storage: Default::default(),
                _owned: PhantomData,
                _borrowed: PhantomData,
                _shared: PhantomData,
            }),

            Shared(s) => Some(Self::shared_nocvt(unsafe {
                // Safety: `mode` indicates we have storage b allocated.
                this.storage.get_ptr_b(s)
            }.clone(), this.ptr)),
        }
    }

    /// Logically clone `this` without needing to clone `OWNED`.
    ///
    /// If this `Supercow` is in owned mode, the owned value is first moved
    /// into a new shared reference so that `OWNED` does not need to be cloned.
    ///
    /// ## Example
    ///
    /// ```
    /// use supercow::Supercow;
    ///
    /// struct NonCloneType(u32);
    ///
    /// let mut first: Supercow<NonCloneType> =
    ///   Supercow::owned(NonCloneType(42));
    /// let second = Supercow::share(&mut first);
    ///
    /// assert_eq!(42, (*first).0);
    /// assert_eq!(42, (*second).0);
    /// ```
    pub fn share(this: &mut Self) -> Self
    where OWNED : SafeBorrow<BORROWED>,
          SHARED : Clone + TwoStepShared<OWNED, BORROWED> {
        match this.mode() {
            Owned(ptr) => {
                let unboxed = SHARED::new_two_step();
                let mut new_storage: STORAGE = Default::default();
                let shared_ptr = new_storage.allocate_b(unboxed);
                let internal_ptr: *const BORROWED = {
                    // `deref_holder` is technically allowed to panic. In
                    // practise it isn't expected to since any implementation
                    // would be trivial. If it *does*, we're still safe, but we
                    // may leak the storage allocated above.
                    let holder = unsafe {
                        // Safety: We just allocated new_storage b above.
                        new_storage.get_mut_b(shared_ptr)
                            .deref_holder()
                    };

                    // The natural way to determine `internal_ptr` below would
                    // be to first write into holder, then do
                    // internal_ptr = holder.as_ref().unwrap().borrow();
                    //
                    // But this isn't safe since `borrow()` could panic and we
                    // have dangling pointers everywhere.
                    //
                    // But we can take advantage of three facts:
                    //
                    // - The memory returned by `borrow()` the last time we
                    // called it must remain valid during these operations
                    // since the owner is not being mutated.
                    //
                    // - Moving the owned value is just a `memcpy()`. This
                    // means anything outside of it remains valid and at the
                    // same address.
                    //
                    // - Anything _inside_ the owned value will be valid at the
                    // same relative position at whatever new address the value
                    // obtains below.
                    //
                    // So what we do instead is determine whether the borrowed
                    // value is internal or external and the calculate what the
                    // new borrowed address is by hand.
                    let owned_base = unsafe {
                        // Safety: `mode` indicates we are in owned mode and so
                        // have storage a allocated.
                        this.storage.get_ptr_a(ptr)
                    }.address();
                    let owned_size = mem::size_of::<OWNED>();
                    // Call borrow() again instead of using our own deref()
                    // since `Phantomcow` can't do the latter.
                    let borrowed_ptr = unsafe {
                        // Safety: `mode` indicates we are in owned mode and so
                        // have storage a allocated.
                        this.storage.get_ptr_a(ptr)
                    }.borrow() as *const BORROWED;

                    // These steps need to be uninterrupted by safe function
                    // calls, as any panics would result in dangling pointers.
                    //
                    // Specifically:
                    //
                    // - `mode` is a dangling pointer until we both it and
                    // `storage` below. But we can't set storage until we've
                    // moved the value out of it.
                    //
                    // - `ptr` is a dangling pointer until we borrow the shared
                    // value below. Because of this, we can't eliminate the
                    // `mode` case by setting it to null, since we don't have
                    // anything `ptr` can legally point to.
                    *holder = Some(unsafe {
                        // Safety: `mode` indicates we are in owned mode and so
                        // have storage a allocated.
                        //
                        // See also comment above, as this operation causes
                        // `this.mode` and `this.ptr` to be invalid.
                        this.storage.deallocate_into_a(ptr)
                    });

                    if borrowed_ptr.within(owned_base, owned_size) {
                        // unwrap() won't panic since we just wrote `Some`
                        // above.
                        let new_base = holder.as_ref().unwrap().address();
                        borrowed_ptr.rebase(owned_base, new_base)
                    } else {
                        borrowed_ptr
                    }
                };
                this.storage = new_storage;
                this.mode = shared_ptr.unalign2() as *mut ();
                this.ptr.store_ptr(internal_ptr);
                // End uninterrupted section
                // `this.mode` now indicates shared mode, and `this.ptr` points
                // into `this.storage` which has been replaced by
                // `new_storage`.

                Self::shared_nocvt(unsafe {
                    // Safety: We just allocated new_storage b above and then
                    // moved it into this.storage.
                    this.storage.get_ptr_b(shared_ptr)
                }.clone(), this.ptr)
            },

            Borrowed => Supercow {
                ptr: this.ptr,
                mode: this.mode,
                storage: Default::default(),
                _owned: PhantomData,
                _borrowed: PhantomData,
                _shared: PhantomData,
            },

            Shared(s) => Self::shared_nocvt(unsafe {
                // Safety: `mode` indicates we have storage b allocated.
                this.storage.get_ptr_b(s)
            }.clone(), this.ptr),
        }
    }

    /// If `this` is borrowed, return the underlying reference with the
    /// original lifetime. Otherwise, return `None`.
    ///
    /// The returned reference has a lifetime independent of `this`.
    ///
    /// This can be used to bridge between `Supercow` APIs and mundane
    /// reference APIs without needing to restrict the lifetime to the
    /// `Supercow`, but as a result is only available if the contained
    /// reference is actually independent.
    ///
    /// ## Example
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// use supercow::Supercow;
    ///
    /// let forty_two: u32 = 42;
    ///
    /// let borrowed: Supercow<u32> = (&forty_two).into();
    /// assert_eq!(Some(&forty_two), Supercow::extract_ref(&borrowed));
    ///
    /// let owned: Supercow<u32> = forty_two.into();
    /// assert_eq!(None, Supercow::extract_ref(&owned));
    ///
    /// let shared: Supercow<u32> = Arc::new(forty_two).into();
    /// assert_eq!(None, Supercow::extract_ref(&shared));
    /// ```
    pub fn extract_ref(this: &Self) -> Option<&'a BORROWED>
    where PTR : PtrRead<BORROWED> {
        match this.mode() {
            // Unsafe to turn the pointer (which we *know* to have lifetime
            // at least 'a, *if* the mode is borrowed) into a reference.
            Borrowed => Some(unsafe { &*this.ptr.get_ptr() }),
            _ => None,
        }
    }

    /// Takes ownership of the underling value if needed, then returns it,
    /// consuming `self`.
    pub fn into_inner(mut this: Self) -> OWNED
    where OWNED : Borrow<BORROWED>,
          BORROWED : ToOwned<Owned = OWNED>,
          PTR : PtrRead<BORROWED> {
        match this.mode() {
            Owned(ptr) => {
                // Safety: `mode` indicates that storage a is allocated.
                unsafe { this.storage.deallocate_into_a(ptr) }
            },
            _ => (*this).to_owned(),
        }
    }

    /// Returns a (indirect) mutable reference to an underlying owned value.
    ///
    /// If this `Supercow` does not currently own the value, it takes
    /// ownership. A `Ref` is then returned which allows accessing the mutable
    /// owned value directly.
    ///
    /// ## Leak Safety
    ///
    /// If the returned `Ref` is released without its destructor being run, the
    /// behaviour of the `Supercow` is unspecified (but does not result in
    /// memory unsafety).
    pub fn to_mut<'b>(&'b mut self) -> Ref<'b, Self>
    where OWNED : SafeBorrow<BORROWED>,
          BORROWED : ToOwned<Owned = OWNED>,
          PTR : PtrRead<BORROWED>
    {
        // Become owned if not already.
        match self.mode() {
            Owned(_) => (),
            _ => *self = Self::owned((*self).to_owned()),
        }

        // Clear out `ptr` if it points somewhere unstable
        let old_ptr = self.ptr.get_ptr();
        self.ptr.store_ptr(OWNED::borrow_replacement(
            // Safety: We know old_ptr is a valid pointer for the lifetime of
            // `self`; all we do here is turn it into a short-lived reference.
            unsafe { &*old_ptr }) as *const BORROWED);

        Ref {
            // Safety: We know that `self` is now in owned mode and so has
            // storage a allocated. We also know that in owned mode,
            // `self.mode` is the exact pointer value that storage returned.
            r: unsafe { self.storage.get_mut_a(self.mode) } as *mut OWNED,
            parent: self,
        }
    }

    /// If `this` is borrowed, clone the inner value so that the new `Supercow`
    /// has a `'static` lifetime.
    ///
    /// If the inner value is owned or shared, this simply returns the input
    /// unchanged.
    ///
    /// ## Example
    ///
    /// ```
    /// use supercow::Supercow;
    ///
    /// let s = {
    ///   let forty_two = 42u32;
    ///   let by_ref: Supercow<u32> = Supercow::borrowed(&forty_two);
    ///   // We can't return `by_ref` because it holds a reference to
    ///   // `forty_two`. However, we can change that lifetime parameter
    ///   // to `'static` and then move that out of the block.
    ///   let by_val: Supercow<'static, u32> = Supercow::unborrow(by_ref);
    ///   by_val
    /// };
    /// assert_eq!(42, *s);
    /// ```
    pub fn unborrow(mut this: Self)
                    -> Supercow<'static, OWNED, BORROWED, SHARED, STORAGE, PTR>
    where OWNED : SafeBorrow<BORROWED>,
          BORROWED : ToOwned<Owned = OWNED>,
          PTR : PtrRead<BORROWED> {
        // Call default() before the below in case it panics.
        let new_storage = STORAGE::default();

        match this.mode() {
            Owned(_) | Shared(_) => Supercow {
                ptr: this.ptr,
                // mem::replace is critical for safety, otherwise we would
                // double-free when `this` is dropped.
                mode: mem::replace(&mut this.mode, ptr::null_mut()),
                storage: mem::replace(&mut this.storage, new_storage),
                _owned: PhantomData,
                _borrowed: PhantomData,
                _shared: PhantomData,
            },

            Borrowed => Supercow::owned((*this).to_owned()),
        }
    }

    /// Takes ownership of the underlying value, so that this `Supercow` has a
    /// `'static` lifetime.
    ///
    /// This may also change the `SHARED` type parameter arbitrarily.
    ///
    /// ## Example
    ///
    /// ```
    /// use supercow::Supercow;
    ///
    /// let s = {
    ///   let forty_two = 42u32;
    ///   let by_ref: Supercow<u32> = Supercow::borrowed(&forty_two);
    ///   // We can't return `by_ref` because it holds a reference to
    ///   // `forty_two`. However, we can change that lifetime parameter
    ///   // to `'static` and then move that out of the block.
    ///   let by_val: Supercow<'static, u32> =
    ///     Supercow::take_ownership(by_ref);
    ///   by_val
    /// };
    /// assert_eq!(42, *s);
    /// ```
    pub fn take_ownership<NS>
        (mut this: Self) -> Supercow<'static, OWNED, BORROWED, NS, STORAGE, PTR>
    where OWNED : SafeBorrow<BORROWED>,
          BORROWED : ToOwned<Owned = OWNED>,
          STORAGE : OwnedStorage<OWNED, NS>,
          PTR : PtrRead<BORROWED> {
        // Call default() before the below in case it panics
        let new_storage = STORAGE::default();

        match this.mode() {
            // We can't just return `this` since we are changing the lifetime
            // and possibly `STORAGE`.
            Owned(_) => Supercow {
                ptr: this.ptr,
                // mem::replace is critical for safety, otherwise we would
                // double-free when `this` is dropped.
                mode: mem::replace(&mut this.mode, ptr::null_mut()),
                storage: mem::replace(&mut this.storage, new_storage),
                _owned: PhantomData,
                _borrowed: PhantomData,
                _shared: PhantomData,
            },

            _ => Supercow::owned((*this).to_owned()),
        }
    }

    /// Converts this `Supercow` into a `Phantomcow`.
    pub fn phantom(mut this: Self)
                   -> Phantomcow<'a, OWNED, BORROWED, SHARED, STORAGE> {
        // Call default() before the below in case it panics
        let new_storage = STORAGE::default();

        let ret = Supercow {
            ptr: (),
            // mem::replace is critical for safety, otherwise we would
            // double-free when `this` is dropped.
            mode: mem::replace(&mut this.mode, ptr::null_mut()),
            storage: mem::replace(&mut this.storage, new_storage),
            _owned: PhantomData,
            _borrowed: PhantomData,
            _shared: PhantomData,
        };
        ret
    }

    /// Sets `self.ptr` up for owned mode.
    ///
    /// `self.ptr` will either be written to a new valid value, or if this call
    /// panics, will be left with whatever value it had before.
    ///
    /// ## Unsafety
    ///
    /// `self` must be in owned mode, and storage slot a allocated.
    unsafe fn borrow_owned(&mut self)
    where OWNED : SafeBorrow<BORROWED> {
        let mut borrowed_ptr = self.storage.get_ptr_a(self.mode).borrow()
            as *const BORROWED;

        // We have a strong assumption that nothing ever gets allocated below
        // MAX_INTERNAL_BORROW_DISPLACEMENT, so check that in debug mode. Note
        // that ZSTs are frequently positioned in this range; as described in
        // the `Deref` implementation, we consider it OK to relocate them and
        // so ignore them.
        debug_assert!(
            0 == mem::size_of_val(&* borrowed_ptr) ||
            borrowed_ptr.address() >= MAX_INTERNAL_BORROW_DISPLACEMENT,
            "Supercow: Non-ZST allocated at {:p}, which is below the \
             minimum supported allocation address of {}",
            borrowed_ptr, MAX_INTERNAL_BORROW_DISPLACEMENT);

        // Adjust the pointer if needed. We only need to consider this case
        // when internal storage may be in use.
        if STORAGE::is_internal_storage() {
            let self_start = self.address();
            let self_size = mem::size_of::<Self>();

            // If not an internal pointer, nothing to adjust.
            if borrowed_ptr.within(self_start, self_size) {
                // In debug mode, ensure that both `OWNED::borrow()` and
                // `STORAGE` fulfilled their maximum offset contract.
                //
                // Note that the actual threshold is greater than the sum of
                // the permitted offsets; here, we strictly check the maximum
                // that the two together may produce. (Note <= and not <.)
                debug_assert!(borrowed_ptr.address() - self_start <=
                              MAX_INTERNAL_BORROW_DISPLACEMENT * 3/2,
                              "Borrowed pointer displaced too far from \
                               base address (supercow at {:x}, self at {:x}, \
                               borrowed to {:x}", self_start,
                              (&self.storage).address(),
                              borrowed_ptr.address());

                // Move the pointer from being based on `self` to being based
                // on NULL. We identify this later in `Deref` by seeing that
                // the nominal address is less than
                // MAX_INTERNAL_BORROW_DISPLACEMENT.
                borrowed_ptr = borrowed_ptr.rebase(self_start, 0);
            }
        }

        // Now that we've determined the new pointer value, write it back. Even
        // if we weren't using the `PTR` abstraction, we would still want to
        // delay this to ensure that this call is atomic.
        self.ptr.store_ptr(borrowed_ptr);
    }

    /// Create an "empty" `Supercow`.
    ///
    /// The value must not be exposed to the outside world as it has a null
    /// `ptr`. However, it is safe to drop as-is as it is returned in reference
    /// mode and has no uninitialised content as far as the compiler is
    /// concerned.
    unsafe fn empty() -> Self {
        Supercow {
            ptr: PTR::new(),
            mode: ptr::null_mut(),
            storage: Default::default(),
            _owned: PhantomData,
            _borrowed: PhantomData,
            _shared: PhantomData,
        }
    }

    fn mode(&self) -> SupercowMode {
        SupercowMode::from_ptr(self.mode)
    }
} }

defimpl! {[] (RefParent for) where {
    OWNED : SafeBorrow<BORROWED>
} {
    type Owned = OWNED;

    unsafe fn supercow_ref_drop(&mut self) {
        // Safety: Contract guarantees we are in owned mode and that there are
        // no live borrows of the owned value remaining.
        self.borrow_owned()
    }
} }

/// Provides mutable access to an owned value within a `Supercow`.
///
/// This is similar to the `Ref` used with `RefCell`.
pub struct Ref<'a, P>
where P : RefParent + 'a {
    // This is a pointer and not a reference as otherwise we would have two
    // `&mut` references into the parent, which is illegal.
    r: *mut P::Owned,
    parent: &'a mut P,
}


impl<'a, P> Deref for Ref<'a, P>
where P : RefParent + 'a {
    type Target = P::Owned;

    #[inline]
    fn deref(&self) -> &P::Owned {
        // Unsafety here and below: Just converting reference to pointer.
        unsafe { &*self.r }
    }
}

impl<'a, P> DerefMut for Ref<'a, P>
where P : RefParent + 'a {
    #[inline]
    fn deref_mut(&mut self) -> &mut P::Owned {
        unsafe { &mut*self.r }
    }
}

impl<'a, P> Drop for Ref<'a, P>
where P : RefParent + 'a {
    #[inline]
    fn drop(&mut self) {
        // The value of `OWNED::borrow()` may have changed, so recompute
        // everything instead of backing the old values up.
        //
        // Safety: The `Ref` could not have been constructed if the parent were
        // not in owned mode. We know there are no reborrows of `r` since the
        // borrow checker would have prevented that as it would also be a
        // borrow of `self`.
        unsafe { self.parent.supercow_ref_drop() }
    }
}

defimpl! {[] (Deref for) where {
    PTR : PtrRead<BORROWED>
} {
    type Target = BORROWED;
    #[inline]
    fn deref(&self) -> &BORROWED {
        let mut target_ref = self.ptr.get_ptr();
        unsafe {
            // Safety: If `self` escaped to a location where other code could
            // call `deref()`, we know that `ptr` has been set up
            // appropriately.

            // If pointers may be stored internally to `self` and the nominal
            // pointer is based on NULL (as positioned by `borrow_owned()`),
            // move the pointer to be based on `self`.
            if STORAGE::is_internal_storage() &&
                target_ref.within(0, MAX_INTERNAL_BORROW_DISPLACEMENT)
            {
                target_ref = target_ref.rebase(0, self.address());
            }
            &*target_ref
        }
    }
} }

defimpl! {[] (Borrow<BORROWED> for) where {
    PTR : PtrRead<BORROWED>,
} {
    fn borrow(&self) -> &BORROWED {
        self.deref()
    }
} }

defimpl! {[] (AsRef<BORROWED> for) where {
    PTR : PtrRead<BORROWED>,
} {
    fn as_ref(&self) -> &BORROWED {
        self.deref()
    }
} }

defimpl! {[] (Clone for) where {
    OWNED : Clone + SafeBorrow<BORROWED>,
    SHARED : Clone,
} {
    fn clone(&self) -> Self {
        match self.mode() {
            Owned(ptr) => Self::owned(unsafe {
                // Safety: `mode` indicates storage `a` is allocated.
                self.storage.get_ptr_a(ptr)
            }.clone()),

            Borrowed => Supercow {
                ptr: self.ptr,
                mode: self.mode,
                storage: Default::default(),
                _owned: PhantomData,
                _borrowed: PhantomData,
                _shared: PhantomData,
            },

            Shared(s) => Self::shared_nocvt(unsafe {
                // Safety: `mode` indicates storage `b` is allocated.
                self.storage.get_ptr_b(s)
            }.clone(), self.ptr),
        }
    }
} }

defimpl! {[] (From<OWNED> for) where {
    OWNED : SafeBorrow<BORROWED>,
} {
    fn from(inner: OWNED) -> Self {
        Self::owned(inner)
    }
} }

// For now, we can't accept `&BORROWED` because it's theoretically possible for
// someone to make `<BORROWED as ToOwned>::Owned = &BORROWED`, in which case
// the `OWNED` version above would apply.
//
// Maybe once specialisation lands in stable, we can make `From` do what we
// want everywhere.
defimpl! {[] (From<&'a OWNED> for) where {
    // Does not need to be `SafeBorrow` since it's not embedded inside us.
    OWNED : Borrow<BORROWED>,
} {
    fn from(inner: &'a OWNED) -> Self {
        Self::borrowed(inner.borrow())
    }
} }

// Similarly, we can't support arbitrary types here, and need to require
// `BORROWED == OWNED` for `Rc` and `Arc`. Ideally, we'd support anything that
// coerces into `SHARED`. Again, maybe one day after specialisation..
impl<'a, OWNED, SHARED, STORAGE> From<Rc<OWNED>>
for Supercow<'a, OWNED, OWNED, SHARED, STORAGE>
where SHARED : SharedFrom<Rc<OWNED>>,
      STORAGE : OwnedStorage<OWNED, SHARED>,
      OWNED : 'a,
      *const OWNED : PointerFirstRef {
    fn from(rc: Rc<OWNED>) -> Self {
        Self::shared(rc)
    }
}
impl<'a, OWNED, SHARED, STORAGE> From<Arc<OWNED>>
for Supercow<'a, OWNED, OWNED, SHARED, STORAGE>
where SHARED : SharedFrom<Arc<OWNED>>,
      STORAGE : OwnedStorage<OWNED, SHARED>,
      OWNED : 'a,
      *const OWNED : PointerFirstRef {
    fn from(rc: Arc<OWNED>) -> Self {
        Self::shared(rc)
    }
}

macro_rules! deleg_fmt { ($tr:ident) => {
    defimpl! {[] (fmt::$tr for) where {
        BORROWED : fmt::$tr,
        PTR : PtrRead<BORROWED>,
    } {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            (**self).fmt(f)
        }
    } }
} }

deleg_fmt!(Binary);
deleg_fmt!(Display);
deleg_fmt!(LowerExp);
deleg_fmt!(LowerHex);
deleg_fmt!(Octal);
deleg_fmt!(Pointer);
deleg_fmt!(UpperExp);
deleg_fmt!(UpperHex);

impl<'a, OWNED, BORROWED : ?Sized, SHARED, STORAGE>
fmt::Debug for Supercow<'a, OWNED, BORROWED, SHARED, STORAGE, ()>
where BORROWED : 'a,
      *const BORROWED : PointerFirstRef,
      STORAGE : OwnedStorage<OWNED, SHARED> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "<Phantomcow>")
    }
}

impl<'a, OWNED, BORROWED : ?Sized, SHARED, STORAGE>
fmt::Debug for Supercow<'a, OWNED, BORROWED, SHARED, STORAGE, *const BORROWED>
where BORROWED : fmt::Debug + 'a,
      *const BORROWED : PointerFirstRef,
      STORAGE : OwnedStorage<OWNED, SHARED> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        (**self).fmt(f)
    }
}

defimpl! {[T] (cmp::PartialEq<T> for) where {
    T : Borrow<BORROWED>,
    BORROWED : PartialEq<BORROWED>,
    PTR : PtrRead<BORROWED>,
} {
    fn eq(&self, other: &T) -> bool {
        **self == *other.borrow()
    }

    fn ne(&self, other: &T) -> bool {
        **self != *other.borrow()
    }
} }

defimpl! {[] (cmp::Eq for) where {
    BORROWED : Eq,
    PTR : PtrRead<BORROWED>,
} { } }

defimpl! {[T] (cmp::PartialOrd<T> for) where {
    T : Borrow<BORROWED>,
    BORROWED : cmp::PartialOrd<BORROWED>,
    PTR : PtrRead<BORROWED>,
} {
    fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
        (**self).partial_cmp(other.borrow())
    }

    fn lt(&self, other: &T) -> bool {
        **self < *other.borrow()
    }

    fn le(&self, other: &T) -> bool {
        **self <= *other.borrow()
    }

    fn gt(&self, other: &T) -> bool {
        **self > *other.borrow()
    }

    fn ge(&self, other: &T) -> bool {
        **self >= *other.borrow()
    }
} }

defimpl! {[] (cmp::Ord for) where {
    BORROWED : cmp::Ord,
    PTR : PtrRead<BORROWED>,
} {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        (**self).cmp(other)
    }
} }

defimpl! {[] (Hash for) where {
    BORROWED : Hash,
    PTR : PtrRead<BORROWED>,
} {
    fn hash<H : Hasher>(&self, h: &mut H) {
        (**self).hash(h)
    }
} }

trait ReferenceExt {
    fn address(&self) -> usize;
}
impl<'a, T : ?Sized + 'a> ReferenceExt for &'a T {
    #[inline]
    fn address(&self) -> usize {
        (*self) as *const T as *const () as usize
    }
}
impl<'a, T : ?Sized + 'a> ReferenceExt for &'a mut T {
    #[inline]
    fn address(&self) -> usize {
        (*self) as *const T as *const () as usize
    }
}

unsafe trait PfrExt : Copy {
    /// Returns the address of this pointer.
    #[inline]
    fn address(self) -> usize {
        let saddr: &usize = unsafe {
            // Safety, here and below: We know `Self` is a `PointerFirstRef` or
            // similar.
            mem::transmute(&self)
        };
        *saddr
    }

    /// Returns a pointer with the same extra data as `self`, but with the
    /// given new `address`.
    #[inline]
    fn with_address(mut self, address: usize) -> Self {
        let saddr: &mut usize = unsafe {
            // Safety: These transmutes are visible to the borrow checker, so
            // we aren't violating aliasing rules.
            mem::transmute(&mut self)
        };
        *saddr = address;

        let saddr: &mut Self = unsafe {
            // Safety: Possibly a grey area, since we may be creating a
            // non-native pointer out of thin air.
            //
            // Transmuting back to `&mut Self` makes the write dependency more
            // explicit but is likely not strictly necessary.
            mem::transmute(saddr)
        };
        *saddr
    }

    /// Returns whether this pointer is within the allocation starting at
    /// `base` and with size `size` (bytes).
    #[inline]
    fn within(self, base: usize, size: usize) -> bool {
        let a = self.address();
        a >= base && a < (base + size)
    }

    /// Adjusts this pointer from being based at `old_base` to being based at
    /// `new_base` (assuming this pointer is within the allocation starting at
    /// `old_base`).
    #[inline]
    fn rebase(self, old_base: usize, new_base: usize) -> Self {
        // Extra parentheses needed to avoid overflow.
        self.with_address(new_base + (self.address() - old_base))
    }

    /// Returns whether this pointer has 2-byte alignment.
    #[inline]
    fn is_2_aligned(self) -> bool {
        0 == (self.address() & 1usize)
    }

    /// Clears bit 0 of this pointer.
    ///
    /// NB This is used to restore the original pointer value from
    /// `Supercow::mode` when indicating shared mode.
    #[inline]
    fn align2(self) -> Self {
        self.with_address(self.address() & !1usize)
    }

    /// Sets bit 0 of this pointer.
    ///
    /// NB This is used to set `Supercow::mode` to indicate shared mode (and
    /// allocation in storage b).
    #[inline]
    fn unalign2(self) -> Self {
        self.with_address(self.address() | 1usize)
    }
}
unsafe impl<T : PointerFirstRef> PfrExt for T { }
unsafe impl<T : ?Sized> PfrExt for *mut T { }

#[cfg(test)]
mod misc_tests {
    use std::borrow::Cow;

    use super::*;

    // This is where the asm in the Performance Notes section comes from.
    #[inline(never)]
    fn add_two_cow(a: &Cow<u32>, b: &Cow<u32>) -> u32 {
        **a + **b
    }

    #[inline(never)]
    fn add_two_supercow(a: &InlineSupercow<u32>,
                        b: &InlineSupercow<u32>) -> u32 {
        **a + **b
    }

    #[test]
    fn do_add_two() {
        // Need to call `add_two_cow` twice to prevent LLVM from specialising
        // it.
        assert_eq!(42, add_two_cow(&Cow::Owned(40), &Cow::Owned(2)));
        assert_eq!(44, add_two_cow(&Cow::Borrowed(&38), &Cow::Borrowed(&6)));
        assert_eq!(42, add_two_supercow(&Supercow::owned(40),
                                        &Supercow::owned(2)));
    }
}

macro_rules! tests { ($modname:ident, $stype:ident, $ptype:ident) => {
#[cfg(test)]
mod $modname {
    use std::sync::Arc;

    use super::*;

    #[test]
    fn ref_to_owned() {
        let x = 42u32;
        let a: $stype<u32> = Supercow::borrowed(&x);
        assert_eq!(x, *a);
        assert_eq!(&x as *const u32 as usize,
                   (&*a) as *const u32 as usize);

        let mut b = a.clone();
        assert_eq!(x, *b);
        assert_eq!(&x as *const u32 as usize,
                   (&*b) as *const u32 as usize);

        *b.to_mut() = 56;
        assert_eq!(42, *a);
        assert_eq!(x, *a);
        assert_eq!(&x as *const u32 as usize,
                   (&*a) as *const u32 as usize);
        assert_eq!(56, *b);
    }

    #[test]
    fn supports_dst() {
        let a: $stype<String, str> = Supercow::borrowed("hello");
        let b: $stype<String, str> = Supercow::owned("hello".to_owned());
        assert_eq!(a, b);

        let mut c = a.clone();
        c.to_mut().push_str(" world");
        assert_eq!(a, b);
        assert_eq!(c, "hello world");
    }

    #[test]
    fn default_accepts_arc() {
        let x: $stype<u32> = Supercow::shared(Arc::new(42u32));
        assert_eq!(42, *x);
    }

    #[test]
    fn ref_safe_even_if_forgotten() {
        let mut x: $stype<String, str> = Supercow::owned("foo".to_owned());
        {
            let mut m = x.to_mut();
            // Add a bunch of characters to invalidate the allocation
            for _ in 0..65536 {
                m.push('x');
            }

            // Prevent the dtor from running but allow us to release the borrow
            ::std::mem::forget(m);
        }

        // While the value has been corrupted, we have been left with a *safe*
        // deref result nonetheless.
        assert_eq!("", &*x);
        // The actual String has not been lost so no memory has been leaked
        assert_eq!(65539, x.to_mut().len());
    }

    #[test]
    // `SipHasher` is deprecated, but its replacement `DefaultHasher` doesn't
    // exist in Rust 1.12.1.
    #[allow(deprecated)]
    fn general_trait_delegs_work() {
        use std::borrow::Borrow;
        use std::convert::AsRef;
        use std::cmp::*;
        use std::hash::*;

        macro_rules! test_fmt {
            ($fmt:expr, $x:expr) => {
                assert_eq!(format!($fmt, 42u32), format!($fmt, $x));
            }
        }

        let x: $stype<u32> = Supercow::owned(42u32);
        test_fmt!("{}", x);
        test_fmt!("{:?}", x);
        test_fmt!("{:o}", x);
        test_fmt!("{:x}", x);
        test_fmt!("{:X}", x);
        test_fmt!("{:b}", x);

        assert!(x == 42);
        assert!(x != 43);
        assert!(x < 43);
        assert!(x <= 43);
        assert!(x > 41);
        assert!(x >= 41);
        assert_eq!(42.partial_cmp(&43), x.partial_cmp(&43));
        assert_eq!(42.cmp(&43), x.cmp(&Supercow::owned(43)));

        let mut expected_hash = SipHasher::new();
        42u32.hash(&mut expected_hash);
        let mut actual_hash = SipHasher::new();
        x.hash(&mut actual_hash);
        assert_eq!(expected_hash.finish(), actual_hash.finish());

        assert_eq!(42u32, *x.borrow());
        assert_eq!(42u32, *x.as_ref());
    }

    #[test]
    fn owned_mode_survives_moving() {
        // Using a `HashMap` here because it means the optimiser can't reason
        // about which one will eventually be chosen, and so one of the values
        // is guaranteed to eventually be moved off the heap onto the stack.
        #[inline(never)]
        fn pick_one() -> $stype<'static, String> {
            use std::collections::HashMap;

            let mut hm = HashMap::new();
            hm.insert("hello", Supercow::owned("hello".to_owned()));
            hm.insert("world", Supercow::owned("world".to_owned()));
            hm.into_iter().map(|(_, v)| v).next().unwrap()
        }

        let s = pick_one();
        assert!("hello".to_owned() == *s ||
                "world".to_owned() == *s);
    }

    #[test]
    fn dst_string_str() {
        let mut s: $stype<'static, String, str> = String::new().into();
        let mut expected = String::new();
        for i in 0..1024 {
            assert_eq!(expected.as_str(), &*s);
            expected.push_str(&format!("{}", i));
            s.to_mut().push_str(&format!("{}", i));
            assert_eq!(expected.as_str(), &*s);
        }
    }

    #[test]
    fn dst_vec_u8s() {
        let mut s: $stype<'static, Vec<u8>, [u8]> = Vec::new().into();
        let mut expected = Vec::<u8>::new();
        for i in 0..1024 {
            assert_eq!(&expected[..], &*s);
            expected.push((i & 0xFF) as u8);
            s.to_mut().push((i & 0xFF) as u8);
            assert_eq!(&expected[..], &*s);
        }
    }

    #[test]
    fn dst_osstring_osstr() {
        use std::ffi::{OsStr, OsString};

        let mut s: $stype<'static, OsString, OsStr> = OsString::new().into();
        let mut expected = OsString::new();
        for i in 0..1024 {
            assert_eq!(expected.as_os_str(), &*s);
            expected.push(&format!("{}", i));
            s.to_mut().push(&format!("{}", i));
            assert_eq!(expected.as_os_str(), &*s);
        }
    }

    #[test]
    fn dst_cstring_cstr() {
        use std::ffi::{CStr, CString};
        use std::mem;
        use std::ops::Deref;

        let mut s: $stype<'static, CString, CStr> =
            CString::new("").unwrap().into();
        let mut expected = CString::new("").unwrap();
        for i in 0..1024 {
            assert_eq!(expected.deref(), &*s);
            {
                let mut ve = expected.into_bytes_with_nul();
                ve.pop();
                ve.push(((i & 0xFF) | 1) as u8);
                ve.push(0);
                expected = unsafe {
                    CString::from_vec_unchecked(ve)
                };
            }
            {
                let mut m = s.to_mut();
                let mut vs = mem::replace(&mut *m, CString::new("").unwrap())
                    .into_bytes_with_nul();
                vs.pop();
                vs.push(((i & 0xFF) | 1) as u8);
                vs.push(0);
                *m = unsafe {
                    CString::from_vec_unchecked(vs)
                };
            }
            assert_eq!(expected.deref(), &*s);
        }
    }

    #[test]
    fn dst_pathbuf_path() {
        use std::path::{Path, PathBuf};

        let mut s: $stype<'static, PathBuf, Path> = PathBuf::new().into();
        let mut expected = PathBuf::new();
        for i in 0..1024 {
            assert_eq!(expected.as_path(), &*s);
            expected.push(format!("{}", i));
            s.to_mut().push(format!("{}", i));
            assert_eq!(expected.as_path(), &*s);
        }
    }

    #[test]
    fn unborrow_owned() {
        let orig: Supercow<String, str> =
            Supercow::owned("hello world".to_owned());
        let unborrowed = Supercow::unborrow(orig);
        assert_eq!(unborrowed, "hello world");
    }

    #[test]
    fn unborrow_borrowed() {
        let orig: Supercow<String, str> =
            Supercow::borrowed("hello world");
        let unborrowed = Supercow::unborrow(orig);
        assert_eq!(unborrowed, "hello world");
    }

    #[test]
    fn unborrow_shared() {
        let orig: Supercow<String> =
            Supercow::shared(Arc::new("hello world".to_owned()));
        let unborrowed = Supercow::unborrow(orig);
        assert_eq!(unborrowed, "hello world".to_owned());
    }

    #[test]
    fn take_ownership_owned() {
        let orig: Supercow<String, str> =
            Supercow::owned("hello world".to_owned());
        let owned: Supercow<String, str> = Supercow::take_ownership(orig);
        assert_eq!(owned, "hello world");
    }

    #[test]
    fn take_ownership_borrowed() {
        let orig: Supercow<String, str> =
            Supercow::borrowed("hello world");
        let owned: Supercow<String, str> = Supercow::take_ownership(orig);
        assert_eq!(owned, "hello world");
    }

    #[test]
    fn take_ownership_shared() {
        let orig: Supercow<String> =
            Supercow::shared(Arc::new("hello world".to_owned()));
        let owned: Supercow<String> = Supercow::take_ownership(orig);
        assert_eq!(owned, "hello world".to_owned());
    }

    struct MockNativeResource(*mut u32);
    impl Drop for MockNativeResource {
        fn drop(&mut self) {
            unsafe { *self.0 = 0 };
        }
    }
    // Not truly safe, but we're not crossing threads here and we need
    // something for the Sync tests either way.
    unsafe impl Send for MockNativeResource { }
    unsafe impl Sync for MockNativeResource { }

    struct MockDependentResource<'a> {
        ptr: *mut u32,
        _handle: $ptype<'a, MockNativeResource>,
    }

    fn check_dependent_ok(mdr: MockDependentResource) {
        assert_eq!(42, unsafe { *mdr.ptr });
    }

    #[test]
    fn borrowed_phantomcow() {
        let mut forty_two = 42u32;

        let native = MockNativeResource(&mut forty_two);
        let sc: $stype<MockNativeResource> = Supercow::borrowed(&native);
        check_dependent_ok(MockDependentResource {
            ptr: &mut forty_two,
            _handle: Supercow::phantom(sc),
        });
    }

    #[test]
    fn owned_phantomcow() {
        let mut forty_two = 42u32;

        let native = MockNativeResource(&mut forty_two);
        let sc: $stype<MockNativeResource> = Supercow::owned(native);
        check_dependent_ok(MockDependentResource {
            ptr: &mut forty_two,
            _handle: Supercow::phantom(sc),
        });
    }

    #[test]
    fn shared_phantomcow() {
        let mut forty_two = 42u32;

        let native = MockNativeResource(&mut forty_two);
        let sc: $stype<MockNativeResource> =
            Supercow::shared(Arc::new(native));
        check_dependent_ok(MockDependentResource {
            ptr: &mut forty_two,
            _handle: Supercow::phantom(sc),
        });
    }

    #[test]
    fn clone_owned_phantomcow() {
        let sc: $stype<String> = Supercow::owned("hello world".to_owned());
        let p1 = Supercow::phantom(sc);
        assert!(Supercow::clone_non_owned(&p1).is_none());
        let _p2 = p1.clone();
    }

    #[test]
    fn clone_borrowed_phantomcow() {
        let sc: $stype<String, str> = Supercow::borrowed("hello world");
        let p1 = Supercow::phantom(sc);
        assert!(Supercow::clone_non_owned(&p1).is_some());
        let _p2 = p1.clone();
    }

    #[test]
    fn clone_shared_phantomcow() {
        let sc: $stype<String> = Supercow::shared(
            Arc::new("hello world".to_owned()));
        let p1 = Supercow::phantom(sc);
        assert!(Supercow::clone_non_owned(&p1).is_some());
        let _p2 = p1.clone();
    }

    struct NotCloneable(u32);
    impl Drop for NotCloneable {
        fn drop(&mut self) {
            self.0 = 0;
        }
    }

    #[test]
    fn share_owned_supercow() {
        let mut a: $stype<NotCloneable> = Supercow::owned(NotCloneable(42));
        let b = Supercow::share(&mut a);

        assert_eq!(42, (*a).0);
        assert_eq!(42, (*b).0);
    }

    #[test]
    fn share_borrowed_supercow() {
        let nc = NotCloneable(42);
        let mut a: $stype<NotCloneable> = Supercow::borrowed(&nc);
        let b = Supercow::share(&mut a);

        assert_eq!(42, (*a).0);
        assert_eq!(42, (*b).0);
    }

    #[test]
    fn share_shared_supercow() {
        let mut a: $stype<NotCloneable> = Supercow::shared(
            Arc::new(NotCloneable(42)));
        let b = Supercow::share(&mut a);

        assert_eq!(42, (*a).0);
        assert_eq!(42, (*b).0);
    }

    #[test]
    fn share_owned_dst_supercow() {
        let mut a: $stype<String, str> = Supercow::owned("hello world".into());
        let b = Supercow::share(&mut a);

        assert_eq!("hello world", &*a);
        assert_eq!("hello world", &*b);
    }

    #[test]
    fn share_owned_phantomcow() {
        let sc: $stype<NotCloneable> = Supercow::owned(NotCloneable(42));
        let mut a: $ptype<NotCloneable> = Supercow::phantom(sc);
        let _b = Supercow::share(&mut a);
    }

    #[test]
    fn share_borrowed_phantomcow() {
        let nc = NotCloneable(42);
        let sc: $stype<NotCloneable> = Supercow::borrowed(&nc);
        let mut a: $ptype<NotCloneable> = Supercow::phantom(sc);
        let _b = Supercow::share(&mut a);
    }

    #[test]
    fn share_shared_phantomcow() {
        let sc: $stype<NotCloneable> =
            Supercow::shared(Arc::new(NotCloneable(42)));
        let mut a: $ptype<NotCloneable> = Supercow::phantom(sc);
        let _b = Supercow::share(&mut a);
    }

    #[test]
    fn share_owned_dst_phantomcow() {
        let sc: $stype<String, str> = Supercow::owned("hello world".into());
        let mut a: $ptype<String, str> = Supercow::phantom(sc);
        let _b = Supercow::share(&mut a);
    }
} } }

tests!(inline_sync_tests, InlineSupercow, InlinePhantomcow);
tests!(inline_nonsync_tests, InlineNonSyncSupercow, InlineNonSyncPhantomcow);
tests!(boxed_sync_tests, Supercow, Phantomcow);
tests!(boxed_nonsync_tests, NonSyncSupercow, NonSyncPhantomcow);