1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//-
// Copyright 2017 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Strategies for combining delegate strategies into `std::Result`s.
//!
//! That is, the strategies here are for producing `Ok` _and_ `Err` cases. To
//! simply adapt a strategy producing `T` into `Result<T, something>` which is
//! always `Ok`, you can do something like `base_strategy.prop_map(Ok)` to
//! simply wrap the generated values.
//!
//! Note that there are two nearly identical APIs for doing this, termed "maybe
//! ok" and "maybe err". The difference between the two is in how they shrink;
//! "maybe ok" treats `Ok` as the special case and shrinks to `Err`;
//! conversely, "maybe err" treats `Err` as the special case and shrinks to
//! `Ok`. Which to use largely depends on the code being tested; if the code
//! typically handles errors by immediately bailing out and doing nothing else,
//! "maybe ok" is likely more suitable, as shrinking will cause the code to
//! take simpler paths. On the other hand, functions that need to make a
//! complicated or fragile "back out" process on error are better tested with
//! "maybe err" since the success case results in an easier to understand code
//! path.

#![cfg_attr(feature = "cargo-clippy", allow(expl_impl_clone_on_copy))]

use core::fmt;
use core::marker::PhantomData;

use crate::std_facade::Arc;
use crate::strategy::*;
use crate::test_runner::*;

// Re-export the type for easier usage.
pub use crate::option::{prob, Probability};

struct WrapOk<T, E>(PhantomData<T>, PhantomData<E>);
impl<T, E> Clone for WrapOk<T, E> {
    fn clone(&self) -> Self {
        *self
    }
}
impl<T, E> Copy for WrapOk<T, E> {}
impl<T, E> fmt::Debug for WrapOk<T, E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "WrapOk")
    }
}
impl<T: fmt::Debug, E: fmt::Debug> statics::MapFn<T> for WrapOk<T, E> {
    type Output = Result<T, E>;
    fn apply(&self, t: T) -> Result<T, E> {
        Ok(t)
    }
}
struct WrapErr<T, E>(PhantomData<T>, PhantomData<E>);
impl<T, E> Clone for WrapErr<T, E> {
    fn clone(&self) -> Self {
        *self
    }
}
impl<T, E> Copy for WrapErr<T, E> {}
impl<T, E> fmt::Debug for WrapErr<T, E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "WrapErr")
    }
}
impl<T: fmt::Debug, E: fmt::Debug> statics::MapFn<E> for WrapErr<T, E> {
    type Output = Result<T, E>;
    fn apply(&self, e: E) -> Result<T, E> {
        Err(e)
    }
}

type MapErr<T, E> =
    statics::Map<E, WrapErr<<T as Strategy>::Value, <E as Strategy>::Value>>;
type MapOk<T, E> =
    statics::Map<T, WrapOk<<T as Strategy>::Value, <E as Strategy>::Value>>;

opaque_strategy_wrapper! {
    /// Strategy which generates `Result`s using `Ok` and `Err` values from two
    /// delegate strategies.
    ///
    /// Shrinks to `Err`.
    #[derive(Clone)]
    pub struct MaybeOk[<T, E>][where T : Strategy, E : Strategy]
        (TupleUnion<(WA<MapErr<T, E>>, WA<MapOk<T, E>>)>)
        -> MaybeOkValueTree<T, E>;
    /// `ValueTree` type corresponding to `MaybeOk`.
    pub struct MaybeOkValueTree[<T, E>][where T : Strategy, E : Strategy]
        (TupleUnionValueTree<(
            LazyValueTree<statics::Map<E, WrapErr<T::Value, E::Value>>>,
            Option<LazyValueTree<statics::Map<T, WrapOk<T::Value, E::Value>>>>,
        )>)
        -> Result<T::Value, E::Value>;
}

opaque_strategy_wrapper! {
    /// Strategy which generates `Result`s using `Ok` and `Err` values from two
    /// delegate strategies.
    ///
    /// Shrinks to `Ok`.
    #[derive(Clone)]
    pub struct MaybeErr[<T, E>][where T : Strategy, E : Strategy]
        (TupleUnion<(WA<MapOk<T, E>>, WA<MapErr<T, E>>)>)
        -> MaybeErrValueTree<T, E>;
    /// `ValueTree` type corresponding to `MaybeErr`.
    pub struct MaybeErrValueTree[<T, E>][where T : Strategy, E : Strategy]
        (TupleUnionValueTree<(
            LazyValueTree<statics::Map<T, WrapOk<T::Value, E::Value>>>,
            Option<LazyValueTree<statics::Map<E, WrapErr<T::Value, E::Value>>>>,
        )>)
        -> Result<T::Value, E::Value>;
}

// These need to exist for the same reason as the one on `OptionStrategy`
impl<T: Strategy + fmt::Debug, E: Strategy + fmt::Debug> fmt::Debug
    for MaybeOk<T, E>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "MaybeOk({:?})", self.0)
    }
}
impl<T: Strategy + fmt::Debug, E: Strategy + fmt::Debug> fmt::Debug
    for MaybeErr<T, E>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "MaybeErr({:?})", self.0)
    }
}

impl<T: Strategy, E: Strategy> Clone for MaybeOkValueTree<T, E>
where
    T::Tree: Clone,
    E::Tree: Clone,
{
    fn clone(&self) -> Self {
        MaybeOkValueTree(self.0.clone())
    }
}

impl<T: Strategy, E: Strategy> fmt::Debug for MaybeOkValueTree<T, E>
where
    T::Tree: fmt::Debug,
    E::Tree: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "MaybeOkValueTree({:?})", self.0)
    }
}

impl<T: Strategy, E: Strategy> Clone for MaybeErrValueTree<T, E>
where
    T::Tree: Clone,
    E::Tree: Clone,
{
    fn clone(&self) -> Self {
        MaybeErrValueTree(self.0.clone())
    }
}

impl<T: Strategy, E: Strategy> fmt::Debug for MaybeErrValueTree<T, E>
where
    T::Tree: fmt::Debug,
    E::Tree: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "MaybeErrValueTree({:?})", self.0)
    }
}

/// Create a strategy for `Result`s where `Ok` values are taken from `t` and
/// `Err` values are taken from `e`.
///
/// `Ok` and `Err` are chosen with equal probability.
///
/// Generated values shrink to `Err`.
pub fn maybe_ok<T: Strategy, E: Strategy>(t: T, e: E) -> MaybeOk<T, E> {
    maybe_ok_weighted(0.5, t, e)
}

/// Create a strategy for `Result`s where `Ok` values are taken from `t` and
/// `Err` values are taken from `e`.
///
/// `probability_of_ok` is the probability (between 0.0 and 1.0, exclusive)
/// that `Ok` is initially chosen.
///
/// Generated values shrink to `Err`.
pub fn maybe_ok_weighted<T: Strategy, E: Strategy>(
    probability_of_ok: impl Into<Probability>,
    t: T,
    e: E,
) -> MaybeOk<T, E> {
    let prob = probability_of_ok.into().into();
    let (ok_weight, err_weight) = float_to_weight(prob);

    MaybeOk(TupleUnion::new((
        (
            err_weight,
            Arc::new(statics::Map::new(e, WrapErr(PhantomData, PhantomData))),
        ),
        (
            ok_weight,
            Arc::new(statics::Map::new(t, WrapOk(PhantomData, PhantomData))),
        ),
    )))
}

/// Create a strategy for `Result`s where `Ok` values are taken from `t` and
/// `Err` values are taken from `e`.
///
/// `Ok` and `Err` are chosen with equal probability.
///
/// Generated values shrink to `Ok`.
pub fn maybe_err<T: Strategy, E: Strategy>(t: T, e: E) -> MaybeErr<T, E> {
    maybe_err_weighted(0.5, t, e)
}

/// Create a strategy for `Result`s where `Ok` values are taken from `t` and
/// `Err` values are taken from `e`.
///
/// `probability_of_ok` is the probability (between 0.0 and 1.0, exclusive)
/// that `Err` is initially chosen.
///
/// Generated values shrink to `Ok`.
pub fn maybe_err_weighted<T: Strategy, E: Strategy>(
    probability_of_err: impl Into<Probability>,
    t: T,
    e: E,
) -> MaybeErr<T, E> {
    let prob = probability_of_err.into().into();
    let (err_weight, ok_weight) = float_to_weight(prob);

    MaybeErr(TupleUnion::new((
        (
            ok_weight,
            Arc::new(statics::Map::new(t, WrapOk(PhantomData, PhantomData))),
        ),
        (
            err_weight,
            Arc::new(statics::Map::new(e, WrapErr(PhantomData, PhantomData))),
        ),
    )))
}

#[cfg(test)]
mod test {
    use super::*;

    fn count_ok_of_1000(s: impl Strategy<Value = Result<(), ()>>) -> u32 {
        let mut runner = TestRunner::deterministic();
        let mut count = 0;
        for _ in 0..1000 {
            count += s.new_tree(&mut runner).unwrap().current().is_ok() as u32;
        }

        count
    }

    #[test]
    fn probability_defaults_to_0p5() {
        let count = count_ok_of_1000(maybe_err(Just(()), Just(())));
        assert!(count > 400 && count < 600);
        let count = count_ok_of_1000(maybe_ok(Just(()), Just(())));
        assert!(count > 400 && count < 600);
    }

    #[test]
    fn probability_handled_correctly() {
        let count =
            count_ok_of_1000(maybe_err_weighted(0.1, Just(()), Just(())));
        assert!(count > 800 && count < 950);

        let count =
            count_ok_of_1000(maybe_err_weighted(0.9, Just(()), Just(())));
        assert!(count > 50 && count < 150);

        let count =
            count_ok_of_1000(maybe_ok_weighted(0.9, Just(()), Just(())));
        assert!(count > 800 && count < 950);

        let count =
            count_ok_of_1000(maybe_ok_weighted(0.1, Just(()), Just(())));
        assert!(count > 50 && count < 150);
    }

    #[test]
    fn shrink_to_correct_case() {
        let mut runner = TestRunner::default();
        {
            let input = maybe_err(Just(()), Just(()));
            for _ in 0..64 {
                let mut val = input.new_tree(&mut runner).unwrap();
                if val.current().is_ok() {
                    assert!(!val.simplify());
                    assert!(val.current().is_ok());
                } else {
                    assert!(val.simplify());
                    assert!(val.current().is_ok());
                }
            }
        }
        {
            let input = maybe_ok(Just(()), Just(()));
            for _ in 0..64 {
                let mut val = input.new_tree(&mut runner).unwrap();
                if val.current().is_err() {
                    assert!(!val.simplify());
                    assert!(val.current().is_err());
                } else {
                    assert!(val.simplify());
                    assert!(val.current().is_err());
                }
            }
        }
    }

    #[test]
    fn test_sanity() {
        check_strategy_sanity(maybe_ok(0i32..100i32, 0i32..100i32), None);
        check_strategy_sanity(maybe_err(0i32..100i32, 0i32..100i32), None);
    }
}